Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 113(24): 246802, 2014 Dec 12.
Article in English | MEDLINE | ID: mdl-25541793

ABSTRACT

The recent observation of ultralow resistivity in highly doped, atomic-scale silicon wires has sparked interest in what limits conduction in these quasi-1D systems. Here we present electron transport measurements of gated Si:P wires of widths 4.6 and 1.5 nm. At 4.6 nm we find an electron mobility, µ(el)≃60 cm²/V s, in excellent agreement with that of macroscopic Hall bars. Metallic conduction persists to millikelvin temperatures where we observe Gaussian conductance fluctuations of order δG∼e²/h. In thinner wires (1.5 nm), metallic conduction breaks down at G≲e²/h, where localization of carriers leads to Coulomb blockade. Metallic behavior is explained by the large carrier densities in Si:P δ-doped systems, allowing the occupation of all six valleys of the silicon conduction band, enhancing the number of 1D channels and hence the localization length.

2.
Nat Nanotechnol ; 9(6): 430-5, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24727686

ABSTRACT

Electron spins confined to phosphorus donors in silicon are promising candidates as qubits because of their long coherence times, exceeding seconds in isotopically purified bulk silicon. With the recent demonstrations of initialization, readout and coherent manipulation of individual donor electron spins, the next challenge towards the realization of a Si:P donor-based quantum computer is the demonstration of exchange coupling in two tunnel-coupled phosphorus donors. Spin-to-charge conversion via Pauli spin blockade, an essential ingredient for reading out individual spin states, is challenging in donor-based systems due to the inherently large donor charging energies (∼45 meV), requiring large electric fields (>1 MV m(-1)) to transfer both electron spins onto the same donor. Here, in a carefully characterized double donor-dot device, we directly observe spin blockade of the first few electrons and measure the effective exchange interaction between electron spins in coupled Coulomb-confined systems.


Subject(s)
Quantum Dots , Silicon/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...