Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Iran J Basic Med Sci ; 27(6): 685-694, 2024.
Article in English | MEDLINE | ID: mdl-38645489

ABSTRACT

Objectives: Tubal factor infertility (TFI) is common female infertility responsible for a large portion of female factor infertility. This study reveals the effect of the quercetin of Huoxuehuayu Tongluo Decoction with azithromycin on the pregnancy rate and inflammation of TFI female rats. Materials and Methods: Female Sprague Dawley rats were constructed into the TFI model and treated with quercetin, Huoxuehuayu Tongluo Decoction, and combination therapy (quercetin and azithromycin). Pregnancy rate and litter size were measured. Network pharmacology was applied to analyze the interaction between Huoxuehuayu Tongluo Decoction and TFI. The combination of quercetin and IL-6 was analyzed by molecular docking. HE staining and electron microscopy were used to observe the histopathology and ultrastructure of fallopian tube tissues. The TNF-α, IL-1ß, IL-6, IL-8, and MPO levels were detected by ELISA. The activation of JAK/STAT, MAPK, and NF-κB p65 pathways was detected by western blot or immunohistochemistry. Results: Quercetin was the main active component of Huoxuehuayu Tongluo Decoction, and could bind to IL-6 in TFI. Target genes were enriched in the IL-17 signaling pathway, JAK-STAT signaling pathway, inflammatory disease, etc. Under the quercetin and azithromycin combination therapy, both rat pregnancy rates and litter sizes increased significantly. quercetin and azithromycin alleviated the symptoms of hydrosalpinx and inflammatory damage in fallopian tube tissues. The phosphorylation of JAK/STAT and MAPK pathways and NF-κB p65 translocation to the nucleus were significantly inhibited by the quercetin and azithromycin therapy. Conclusion: Quercetin and azithromycin combination therapy inhibited inflammation and phosphorylation of JAK/STAT and MAPK pathways to improve TFI inflammation and pregnancy function.

2.
Foods ; 13(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38472859

ABSTRACT

The aim of this study was to obtain egg-derived peptides with facilitating alcohol metabolism (EPs) by enzymolysis, to identify their structures, and screen small polypeptides with higher activity by molecular docking. The optimum conditions for preparing EPs with facilitating alcohol metabolism were obtained by a single factor experiment, adding 2% Protamex and performing enzymolysis for 3 h with a liquid-material ratio of 35:1. The dose-response relationship experiment showed that 800 mg/kg·bw EPs played a better role in facilitating alcohol metabolism. EPs contained 40% hydrophobic amino acids (HAA), including 9.24% Leu. Eighty-four peptides were identified by HPLC-MS/MS and four peptides with potential activation of alcohol dehydrogenase were further selected by molecular docking. The tetrapeptide Trp-Ile-Val-Asp (WIVD) with the highest binding energy reached -7.16 kcal/mol. These findings suggest that egg is a good source for the preparation of peptides with facilitating alcohol metabolism activity.

3.
Nutrients ; 16(4)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38398836

ABSTRACT

Eggs, with their high nutritional value, are great carriers for enriching nutrients. In this study, selenium- and/or zinc-enriched eggs (SZE) were obtained and their effects on ameliorating oxidative stress injury, alleviating cognitive impairment, and maintaining intestinal flora balance in a D-gal-induced aging mice model were investigated. As determined by the Y-maze test, SZE restored the learning and memory abilities and increased the Ach level and AChE activity of aging mice (p < 0.05). Meanwhile, supplementation of low-dose SZE increased antioxidant levels and decreased inflammation levels (p < 0.05). High-dose SZE increased anti-inflammatory levels but were less effective than low dose. Additionally, SZE maintained the intestinal flora balance and significantly increased the ratio of Firmicutes and Bacteroidota. Blautia, as a probiotic, was negatively correlated with pro-inflammatory factors and positively correlated with antioxidant levels (p < 0.05). These results suggest that SZE might improve organ damage and cognitive function by attenuating oxidative stress and inflammatory response and maintaining healthy gut flora.


Subject(s)
Gastrointestinal Microbiome , Selenium , Mice , Animals , Selenium/pharmacology , Antioxidants/pharmacology , Zinc/pharmacology , Oxidative Stress , Aging , Diet , Galactose/pharmacology
4.
EClinicalMedicine ; 67: 102403, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38261958

ABSTRACT

Background: Platinum-doublet chemotherapy plus immunotherapy has been the standard of care for the first-line treatment of advanced non-small cell lung cancer lacking actional driver mutations. However, optimization of drug combinations is still needed to find a better balance between therapeutic efficacy and safety in the immunotherapy era. We aimed to investigate the efficacy and safety of platinum-free albumin bound paclitaxel (nab-paclitaxel) combined with camrelizumab and apatinib as first-line treatment for patients with advanced lung adenocarcinoma. Methods: In this multicenter open-label, single-arm phase II trial, patients with systemic treatment-naïve advanced lung adenocarcinoma without epidermal growth factor receptor (EGFR) or anaplastic lymphoma kinase (ALK) mutations received a rational-based combination of camrelizumab (200 mg intravenously, day one), apatinib (250 mg, q.d., five continuous days per week), and nab-paclitaxel (135 mg/m2 intravenously, days one and eight) every three weeks for four to six cycles in China. Patients with controlled disease were maintained with camrelizumab and apatinib. The primary end point was progression-free survival (PFS). This trial is registered with ClinicalTrials.gov (No. NCT04459078). Findings: Between August 26, 2020 and May 20, 2022, 64 patients were enrolled. The median PFS was 14.3 (95% CI: 9.9, not reached) months. The confirmed objective response rate was 64.1% (95% CI: 51.1, 75.7). The grade 3-4 hematologic treatment-related adverse events (TRAEs) were decreased neutrophil count (14.1%), decreased white blood cell count (7.8%), and anemia (3.1%). The most common non-hematologic TRAEs of grade 3-4 were increased alanine transaminase (18.8%) and aspartate transaminase (15.6%). No treatment-related death occurred. The quality of life was on average not clinically meaningful worse through treatment cycle 14. Interpretation: Nab-paclitaxel plus camrelizumab and apatinib showed clinically meaningful anti-tumor activity and manageable safety, with few hematologic toxicities, and might be a potential treatment option in patients with advanced lung adenocarcinoma lacking EGFR/ALK mutations. Funding: Heath Research Foundation of Chinese Society of Clinical Oncology, Hunan Provincial Natural Science Foundation of China, Hunan Cancer Hospital Climb Plan, Sister Institution Network Fund of The University of Texas MD Anderson Cancer Center, The Science and Technology Innovation Program of Hunan Province, and Suzhou Sheng Diya Biomedical Co., Ltd, a subsidiary of Jiangsu Hengrui Pharmaceuticals Co., Ltd. (Shanghai, China).

5.
Polymers (Basel) ; 14(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36365702

ABSTRACT

In air and railway transportation, corrosion and wear lead to the rapid failure of equipment. Epoxy (EP)-based coatings are widely used in research on the anti-corrosion of organic coatings, but their application as materials for wear resistance is limited due to their non-abrasive properties. In this study, a novel high-performance epoxy-based composite coating was developed through the self-assembly of silicon carbide (SiC) and graphene oxide (GO) and the tuning of the interfacial structure with epoxy resin. The coatings were comprehensively characterized, including their electrochemical behavior, a salt spray test, and friction and wear experiments, and the optimal addition ratio of SiC-G@GO (SiC-G@GO was prepared by the self-assembly of γ-(2,3-epoxypropoxy) propytrimethoxysilane (KH560)-modified SiC (SiC-G) on the surface of GO sheets) in the epoxy coatings was explored. Benefiting from the labyrinth effect and their rolling-friction-like microstructure, the 1 wt% SiC-G@GO/EP coating exhibits excellent wear and corrosion resistance. Compared with pure epoxy resin, the 1 wt% SiC-G@GO/EP coating increased by 4 orders of magnitude after 10 days of immersion. The average friction coefficient was 41.5% lower than that of the pure EP coating, and the wear rate was 56.6% lower. This research has positive implications for the development and application of anti-corrosion and wear-resistant organic coatings.

6.
Int. microbiol ; 25(3): 515-529, Ago. 2022. ilus, graf
Article in English | IBECS | ID: ibc-216211

ABSTRACT

Kluyveromyces marxianus is expected to be used in the production of yeast extracts due to its good fermentation ability and nutritional properties. Yeast autolysis is a key process to produce yeast extract and vacuum negative pressure stress can be used as an effective way to assist autolysis. However, the molecular mechanism of initiating Kluyveromyces marxianus autolysis induced by vacuum negative pressure and the higher temperature is still unclear. In this study, RNA-seq technology was performed mainly to analyze autolytic processes in Kluyveromyces marxianus strains. Considerable differentially expressed genes (DEGs) of downregulation were significantly enriched in 7 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to synthesis and transport of RNA and ribosome, which indicated that abnormal protein translations had already occurred in autolytic process. Interestingly, due to obvious change of related DEGs, endoplasmic reticulum-associated degradation (ERAD) and autophagy were activated and cell wall integrity pathway was hindered. Under the continuous influence of the external stress environment, the long-term changes of the above pathways triggered a vicious circle of gradual damage to yeast cells, which is the main cause of yeast autolysis. These results may provide important clues for the in-depth interpretation of the yeast autolytic mechanism.(AU)


Subject(s)
Humans , Autolysis , Base Sequence , Kluyveromyces , Yeasts , Fermentation , Microbiology , Microbiological Techniques
7.
Int Microbiol ; 25(3): 515-529, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35156144

ABSTRACT

Kluyveromyces marxianus is expected to be used in the production of yeast extracts due to its good fermentation ability and nutritional properties. Yeast autolysis is a key process to produce yeast extract and vacuum negative pressure stress can be used as an effective way to assist autolysis. However, the molecular mechanism of initiating Kluyveromyces marxianus autolysis induced by vacuum negative pressure and the higher temperature is still unclear. In this study, RNA-seq technology was performed mainly to analyze autolytic processes in Kluyveromyces marxianus strains. Considerable differentially expressed genes (DEGs) of downregulation were significantly enriched in 7 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to synthesis and transport of RNA and ribosome, which indicated that abnormal protein translations had already occurred in autolytic process. Interestingly, due to obvious change of related DEGs, endoplasmic reticulum-associated degradation (ERAD) and autophagy were activated and cell wall integrity pathway was hindered. Under the continuous influence of the external stress environment, the long-term changes of the above pathways triggered a vicious circle of gradual damage to yeast cells, which is the main cause of yeast autolysis. These results may provide important clues for the in-depth interpretation of the yeast autolytic mechanism.


Subject(s)
Kluyveromyces , Transcriptome , Endoplasmic Reticulum-Associated Degradation , Fermentation , Kluyveromyces/genetics , Kluyveromyces/metabolism , Temperature , Vacuum
8.
Acta Histochem ; 122(7): 151600, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33066828

ABSTRACT

OBJECTIVES: Aim of this study is to explore whether quercetin can inhibit the enlarged fibrogenic responses of endometrial stromal cells by increasing the level of microRNA-145 (miR-145) and mediating the TGFß1/Smad2/Smad3 signaling pathway, and to discuss the mechanism of signal transduction, further to provide experimental basis for revealing the pathophysiological mechanism and seeking new strategies for effective prevention and treatment of endometrial fibrosis. METHODS: The expression levels of miR-145 and TGF-ß receptor 2 (TGFBR2) were detected by RT-qPCR analysis. Expressions of α-smooth muscle actin (α-SMA) and vimentin were examined by immunofluorescence staining. Cell viability was measured by MTT assay. The protein expression of collagen type 1 alpha 1 (Col1a1), α-SMA, fibronectin (FN), TGFBR2, transforming growth factor (TGF-ß1), Smad2/3, phospho-Smad2/3 (p-Smad2/3) were detected by western blot analysis. The interaction between miR-145 and TGFBR2 was confirmed by dual-luciferase reporter gene assay. RESULTS: The expression level of miR-145 was decreased, whereas TGFBR2 was increased in intrauterine adhesion tissue. The expression levels of COL1A1, α-SMA, FN, TGFBR2, and p-Smad2/3 were increased, whereas miR-145 and cell proliferation were decreased in human endometrial stromal cells (hESCs) in response to TGF-ß1 stimulation in a time and dose-dependent manner, which could be reversed by quercetin. Furthermore, quercetin regulates cell fibrogenic responses of endometrial stromal cells via miR-145/TGF-ß1/Smad2/Smad3 pathway. CONCLUSIONS: These findings indicated that quercetin have a significant anti-fibrotic effect and could upregulate miR-145 and inhibit activation of TGF-ß1/Smad2/Smad3 pathway to regulate TGF-ß1 induced fibrogenic responses of endometrial stromal cells, which may serve as a potential therapeutic agent for endometrial fibrosis.


Subject(s)
MicroRNAs/drug effects , Quercetin/pharmacology , Receptor, Transforming Growth Factor-beta Type II/drug effects , Smad2 Protein/drug effects , Smad3 Protein/drug effects , Adult , Female , Humans , Male , Stromal Cells/drug effects , Transforming Growth Factor beta1/drug effects , Transforming Growth Factor beta1/genetics
9.
FEMS Yeast Res ; 20(5)2020 08 01.
Article in English | MEDLINE | ID: mdl-32556321

ABSTRACT

Yeast autolysis refers to the process in which cells degrade and release intracellular contents under specific conditions by endogenous enzymes such as proteases, nucleases and lipid enzymes. Protein-rich baker's yeast is widely used to produce yeast extract in food industry, however, the molecular mechanism related to baker's yeast autolysis is still unclear. In this study, RNA-seq technology and biochemical analysis were performed to analyze the autolysis processes in baker's yeast. The differentially expressed genes (DEGs), 27 autolysis-related euKaryotic Ortholog Groups (KOG) and three types of autolysis-induced Gene Ontology (GO) were identified and analyzed in detail. A total of 143 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways under autolysis were also assigned. Interestingly, the DEGs were significantly enriched in the mitogen-activated protein kinase (MAPK) signaling pathways and metabolic pathways, and key genes MID2, MTL1, SLT2, PTP2, HKR1 and GPD1 may play important roles in autolysis. Further quantitative PCR was performed to verify the expression pattern in baker's yeast autolysis. Together, all these results indicated that MAPK pathways might play an essential role during autolysis process through inhibiting the metabolism and disrupting cell wall in baker's yeast. This result may provide important clues for the in-depth interpretation of the yeast autolysis mechanism.


Subject(s)
Autolysis , MAP Kinase Signaling System , Saccharomyces cerevisiae/genetics , Genes, Fungal , RNA-Seq , Saccharomyces cerevisiae/enzymology , Transcriptome
10.
Biotechnol Appl Biochem ; 66(3): 389-397, 2019 May.
Article in English | MEDLINE | ID: mdl-30715749

ABSTRACT

The high cell density culture of baker's yeast FX-2 was investigated in a 50 L(A) automatic bioreactor. Herein, it was found firstly that the Crabtree effect clearly existed in batch fermentation with higher glucose content, then the critical initial glucose content range (≤2.00 g L-1 ) was reasonably ascertained to effectively avoid Crabtree effect. In the next fed-batch fermentations with different strategies, the second strategy (maintain ethanol concentration lower than 0.10% and pH around 4.80) was confirmed to be more beneficial to yeast growth than the first strategy (keep reducing sugar not more than 2.00 g L-1 and control steady Carbon/Nitrogen ratio 3.05:1.00). After that, one optimal control strategy (maintain pH around 4.80 and keep respiratory quotient in the range of 0.90-1.00) was constructed to further enhance cell yield. Under an optimal control strategy, four schemes with the aim of achieving pH-stat were compared, and yeast extract instead of other alkaline materials was selected as a better regulator. As a result, 148.37 g L-1 dry cell weight, 38.25 × 108 mL-1 living cells, and 8.24 g L-1  h-1 productivity were harvested, which respectively elevated 23.74%, 135.38%, and 24.47% compared to that obtained under the traditional scheme (regulate pH with ammonia); meanwhile, the maximum oxygen uptake rate and carbon dioxide excretion rate were both more than 250.00 mmol L-1  min-1 .


Subject(s)
Cell Culture Techniques , Fermentation , Saccharomyces cerevisiae/cytology , Bioreactors , Glucose/chemistry , Glucose/metabolism , Hydrogen-Ion Concentration , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Time Factors
11.
Bioprocess Biosyst Eng ; 41(6): 819-829, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29511886

ABSTRACT

The computational fluid dynamics (CFD) software package Fluent was utilized to simulate the flow field of Escherichia coli (E. coli) BL21 fermentation in a 50 L automatic bioreactor for producing α-cyclodextrin glycosyltransferase (α-CGTase) in this study. 4-down-pumping propeller (4DPP), 6-curved-blade disc turbine (6CBDT), and Rushton turbine (RT) were assembled to form eight impeller combinations (C1-C8). Through flow field simulating, four referential impeller combinations, in which C6, C7, and C8 were three layers stirring blades and C1 as a control, were selected to carry out batch fermentation experiments (TC1, TC6, TC7, and TC8) for validation. The correlation analysis between simulation results and experimental measurements indicated that TC6 (tank equipped with C6 impeller combination) exhibited lower enzymatic activity though it had the better mixing effect, fastest oxygen uptake rate (OUR), and maximum specific growth rate (µ) in the initial stage, which was just to the contrary in TC8. It was revealed by next fed-batch fermentation experiments in TC6 and TC8 that TC6 was considered as excellent flow field properties brought about the higher µ of E. coli BL21 and fast acetic acid (HAc) accumulation, which resulting in a serious inhibition on α-CGTase expression and this negative effect could not be removed. As a result, there should be a threshold of HAc accumulation rate which brought about a terrible inhibitory effect on α-CGTase expression. Moreover, the yield of α-CGTase activity reached 231.38 U mL- 1 in TC8, which elevated 31.74% compared to that obtained in TC1.


Subject(s)
Bioreactors , Escherichia coli Proteins/biosynthesis , Escherichia coli/growth & development , Glycosyltransferases/biosynthesis , Escherichia coli/enzymology
12.
Nanoscale ; 9(27): 9548-9555, 2017 Jul 13.
Article in English | MEDLINE | ID: mdl-28661527

ABSTRACT

The responsive photonic crystal (RPC) balls with adjustable lattice constant and controllable rotation developed to date are all based on Janus particles of three dimensional (3-D) periodical structures, which suffer from color uneveness and asymmetric volume change, limiting the applications in the fields of encoding, sensing and displays. In this study, we have developed the first 1-D magnetic photonic crystal balls with tunable lattice constants by fixing collectively oriented periodical 1-D magnetic nanochain-like structures in responsive polymer poly(N-isopropylacrylamide) hydrogel balls under magnetic field (H) and UV irradiation. The structural colors of the balls are uniform on the entire ball and can be regulated by temperature (T) and solvents. The as-prepared RPC balls always retain a perfectly spherical shape even when the hydrogel volume changes with stimuli because of the low content of the included 1-D magnetic nanochain-like structures. This endows smooth rotation in the H direction to switch "on/off" their structural colors at various stimuli, as demonstrated by a colorful display application at temperature ranging from 10 to 35 °C. The as-developed RPC balls are expected to have promising potential applications in color display, rewritable signage, biological and chemical sensors owing to their excellent multi-response properties.

13.
Bioengineered ; 8(5): 585-593, 2017 Sep 03.
Article in English | MEDLINE | ID: mdl-28282255

ABSTRACT

Using 5 Zn2+ supplementation strategies in a 50 L batch bioreactor named FUS-50L(A), possible correlations among Zn2+ content and addition timing, physiologic activity (PA), halohydrin dehalogenase (HheC) accumulation of Escherichia coli P84A/MC1061 were systematically investigated. First, Zn2+ was confirmed as the significant factor, and its optimal concentration for HheC expression was 3.87 mg/L through fermentation experiments in shaking flasks. Second, based on experimental results from the different strategies, it was found that PA, nutrient consumption rate (NCR) and specific growth rate (µ) for E. coli P84A/MC1061 were promoted in the log phase (4-8 h) under appropriate Zn2+ concentrations in the lag phase and late log phase. Furthermore cell biomass was also increased to a higher level and the maximum HheC activity (i.e. HheCmax) was increased by 9.80%, and the time to reach HheCmax was reduced from 16 to 12 hours. Furthermore, appropriate supplementation of Zn2+ caused higher µ for E. coli P84A/MC1061, which resulted in more rapid accumulation of increased acetic acid concentrations, leading to higher acetic acid consumption avoiding any negative effects on producing HheC because of carbon source being exhausted prematurely and acetic acid being consumed rapidly.


Subject(s)
Bioreactors/microbiology , Escherichia coli/drug effects , Escherichia coli/enzymology , Hydrolases/biosynthesis , Models, Biological , Zinc/administration & dosage , Computer Simulation , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Escherichia coli/classification , Gene Expression Regulation, Bacterial/drug effects , Gene Expression Regulation, Bacterial/physiology , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Enzymologic/physiology , Hydrolases/isolation & purification , Species Specificity , Statistics as Topic
14.
J Biosci Bioeng ; 115(1): 27-31, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22921660

ABSTRACT

In this work, the flow field in the existing fermentor with radial-flow impellers (C1) was studied using the computational fluid dynamics (CFD) software package Fluent, then the fermentor with radial-axial flow impellers (C2) was constructed and was compared with the C1 fermentor by CFD and experimental research. The simulation results revealed that the flow field in C2 fermentor had characteristics such as higher turbulent kinetic energy, gas holdup and shear rates. Metabolic variables of Streptomyces lincolnensis in the two fermentors such as carbon and nitrogen source consumption rates, specific growth rates (µ), hyphae morphologies, and lincomycin productivities were further explored. The correlation analysis between the experimental measurements and the simulation results indicated that the hyphae clustering and dry cell weight (DCW) decreasing at production stage were eliminated in C2 fermentor, which had higher gas volumetric mass transfer coefficient (K(L)a), dissolved oxygen (DO) concentration and consumption rates of nutrient materials. When C2 was employed in the fermentor, the specific growth rate of S. lincolnensis at growth stage was higher, and the maintenance metabolism together with secondary metabolism at production stage was kept at higher levels. As a result, the yield of lincomycin was achieved 7039 µg ml(-1) when the 60 m(3) industrial fermentor was equipped with C2, which was increased by 46% compared to that obtained in the C1 fermentor.


Subject(s)
Bioreactors , Fermentation , Lincomycin/metabolism , Streptomyces/metabolism , Carbon/metabolism , Computer Simulation , Gases/metabolism , Hyphae/metabolism , Kinetics , Lincomycin/biosynthesis , Nitrogen/metabolism , Oxygen/metabolism , Software , Streptomyces/growth & development
15.
Zhonghua Wai Ke Za Zhi ; 47(14): 1064-6, 2009 Jul 15.
Article in Chinese | MEDLINE | ID: mdl-19781270

ABSTRACT

OBJECTIVE: To investigate the efficiency and safety of two-dose steroid combined with two-dose daclizumab and tacrolimus (FK506) regimen in liver transplant recipients. METHODS: There were 74 patients who treated in the First Affiliated Hospital of Sun Yat-Sen University from September 2006 to March 2008. Expect for 7 patients who didn't measure up, 67 adult liver transplant recipients were randomized into two groups: conventional protocol group (n = 35) in which steroid was withdrawn in 3 months after operation, and two-dose steroid group (n = 32). Comparison of rejection, infection (bacteria, fungal and cytomegalovirus) and metabolic complications rates were studied between two groups. RESULTS: There were significant differences between two groups in the rate of early postoperation hyperglycemia, the average dosage of insulin consumption among hyperglycemia recipients as well as the rate of diabetes mellitus, hypertension and infection during the follow-up period (P < 0.05). The rate of hypertension in early postoperation period, hyperlipemia and rejection rate during the follow-up period were similar in two groups (P > 0.05). CONCLUSIONS: Two-dose steroid combined with two-dose daclizumab and tacrolimus would be a safe and efficient immunosuppression strategy without increase the acute rejection rate hazard, that could reduce post-transplant infection and other complications from side-effect of long-term usage of steroid.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Immunoglobulin G/administration & dosage , Immunosuppression Therapy/methods , Immunosuppressive Agents/administration & dosage , Liver Transplantation , Tacrolimus/administration & dosage , Adult , Aged , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Daclizumab , Female , Graft Rejection/prevention & control , Humans , Immunoglobulin G/therapeutic use , Immunosuppressive Agents/therapeutic use , Male , Methylprednisolone/administration & dosage , Methylprednisolone/therapeutic use , Middle Aged , Steroids/administration & dosage , Steroids/therapeutic use , Tacrolimus/therapeutic use
16.
J Biol Chem ; 283(40): 26894-901, 2008 Oct 03.
Article in English | MEDLINE | ID: mdl-18682386

ABSTRACT

S-phase transcription of the histone 2B (H2B) gene is dependent on Octamer-binding factor 1 (Oct-1) and Oct-1 Co-Activator in S-phase (OCA-S), a protein complex comprising glyceraldehyde-3-phosphate dehydrogenase and lactate dehydrogenase (p38/GAPDH and p36/LDH) along with other components. H2B transcription in vitro is modulated by NAD(H). This potentially links the cellular redox status to histone expression. Here, we show that H2B transcription requires a proper NAD(+)/NADH redox status in vitro and in vivo. Therefore, perturbing a properly balanced redox impairs H2B transcription. A redox-modulated direct p38/GAPDH-Oct-1 interaction nucleates the occupancy of the H2B promoter by the OCA-S complex, in which p36/LDH plays a critical role in the hierarchical organization of the complex. As for p38/GAPDH, p36/LDH is essential for the OCA-S function in vivo, and OCA-S-associated p36/LDH possesses an LDH enzyme activity that impacts H2B transcription. These studies suggest that the cellular redox status (metabolic states) can directly feedback to gene switching in higher eukaryotes as is commonly observed in prokaryotes.


Subject(s)
Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation/physiology , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Histones/biosynthesis , L-Lactate Dehydrogenase/metabolism , Nitrosamines/metabolism , Octamer Transcription Factor-1/metabolism , Transcription Factors/metabolism , Animals , Cell Cycle Proteins/genetics , DNA-Binding Proteins/genetics , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , HeLa Cells , Histones/genetics , Humans , L-Lactate Dehydrogenase/genetics , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Octamer Transcription Factor-1/genetics , Oxidation-Reduction , Promoter Regions, Genetic/physiology , S Phase/physiology , Transcription Factors/genetics , Transcription, Genetic/physiology , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...