Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Clin Transl Med ; 14(5): e1675, 2024 May.
Article in English | MEDLINE | ID: mdl-38689424

ABSTRACT

INTRODUCTION: Intrahepatic cholangiocarcinoma (ICC) is characterized by a dismal prognosis with limited therapeutic alternatives. To explore phosphatase and tension homolog (PTEN) as a biomarker for proteasome inhibition in ICC, we conducted a phase II trial to assess the second-line efficacy of bortezomib in PTEN-deficient advanced ICC patients. METHODS: A total of 130 patients with advanced ICC in our centre were screened by PTEN immunohistochemical staining between 1 July 2017, and 31 December 2021, and 16 patients were ultimately enrolled and treated with single-agent bortezomib 1.3 mg/m2 on days 1, 4, 8 and 11 of a 21-day cycle. The primary endpoint was the objective response rate (ORR) according to Response Evaluation Criteria in Solid Tumors v1.1. RESULTS: The median follow-up was 6.55 months (95% confidence interval [CI]: 0.7-19.9 months). Among the 16 enrolled patients, the ORR was 18.75% (3/16) and the disease control rate was 43.75% (7/16). The median progress-free survival was 2.95 months (95% CI: 2.1-5.1 months) and the median overall survival (mOS) was 7.2 months (95% CI: 0.7-21.6 months) in the intent-to-treat-patients. Treatment-related adverse events of any grade were reported in 16 patients, with thrombopenia being the most common toxicity. Patients with PTEN staining scores of 0 were more likely to benefit from bortezomib than those with staining scores > 0. CONCLUSIONS: Bortezomib yielded an encouraging objective response and a favourable OS as a second-line agent in PTEN-deficient ICC patients. Our findings suggest bortezomib as a promising therapeutic option for patients with PTEN-deficient ICC. HIGHLIGHTS: There is a limited strategy for the second-line option of intrahepatic cholangiocarcinoma (ICC). This investigator-initiated phase 2 study evaluated bortezomib in ICC patients with phosphatase and tension homology deficiency. The overall response rate was 18.75% and the overall survival was 7.2 months in the intent-to-treat cohort. These results justify further developing bortezomib in ICC patients with PTEN deficiency.


Subject(s)
Bile Duct Neoplasms , Bortezomib , Cholangiocarcinoma , PTEN Phosphohydrolase , Humans , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Bortezomib/therapeutic use , Bortezomib/pharmacology , Male , Female , Middle Aged , Aged , Prospective Studies , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/genetics , Adult , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology
2.
Cell Death Dis ; 15(4): 300, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684648

ABSTRACT

The treatment of hepatocellular carcinoma (HCC) is particularly challenging due to the inherent tumoral heterogeneity and easy resistance towards chemotherapy and immunotherapy. Arsenic trioxide (ATO) has emerged as a cytotoxic agent effective for treating solid tumors, including advanced HCC. However, its effectiveness in HCC treatment remains limited, and the underlying mechanisms are still uncertain. Therefore, this study aimed to characterize the effects and mechanisms of ATO in HCC. By evaluating the susceptibilities of human and murine HCC cell lines to ATO treatment, we discovered that HCC cells exhibited a range of sensitivity to ATO treatment, highlighting their inherent heterogeneity. A gene signature comprising 265 genes was identified to distinguish ATO-sensitive from ATO-insensitive cells. According to this signature, HCC patients have also been classified and exhibited differential features of ATO response. Our results showed that ATO treatment induced reactive oxygen species (ROS) accumulation and the activation of multiple cell death modalities, including necroptosis and ferroptosis, in ATO-sensitive HCC cells. Meanwhile, elevated tumoral immunogenicity was also observed in ATO-sensitive HCC cells. Similar effects were not observed in ATO-insensitive cells. We reported that ATO treatment induced mitochondrial injury and mtDNA release into the cytoplasm in ATO-sensitive HCC tumors. This subsequently activated the cGAS-STING-IFN axis, facilitating CD8+ T cell infiltration and activation. However, we found that the IFN pathway also induced tumoral PD-L1 expression, potentially antagonizing ATO-mediated immune attack. Additional anti-PD1 therapy promoted the anti-tumor response of ATO in ATO-sensitive HCC tumors. In summary, our data indicate that heterogeneous ATO responses exist in HCC tumors, and ATO treatment significantly induces immunogenic cell death (ICD) and activates the tumor-derived mtDNA-STING-IFN axis. These findings may offer a new perspective on the clinical treatment of HCC and warrant further study.


Subject(s)
Arsenic Trioxide , Carcinoma, Hepatocellular , Immunogenic Cell Death , Liver Neoplasms , Membrane Proteins , Nucleotidyltransferases , Arsenic Trioxide/pharmacology , Arsenic Trioxide/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/immunology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Humans , Animals , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice , Immunogenic Cell Death/drug effects , Cell Line, Tumor , Interferons/metabolism , Signal Transduction/drug effects , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL
3.
Sci Transl Med ; 15(704): eadd7464, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37437018

ABSTRACT

Gemcitabine is a nucleoside analog that has been successfully used in the treatment of multiple cancers. However, intrinsic or acquired resistance reduces the chemotherapeutic potential of gemcitabine. Here, we revealed a previously unappreciated mechanism by which phosphatase and tensin homolog (PTEN), one of the most frequently mutated genes in human cancers, dominates the decision-making process that is central to the regulation of gemcitabine efficacy in cholangiocarcinoma (CCA). By investigating a gemcitabine-treated CCA cohort, we found that PTEN deficiency was correlated with the improved efficacy of gemcitabine-based chemotherapy. Using cell-based drug sensitivity assays, cell line-derived xenograft, and patient-derived xenograft models, we further confirmed that PTEN deficiency or genetic-engineering down-regulation of PTEN facilitated gemcitabine efficacy both in vitro and in vivo. Mechanistically, PTEN directly binds to and dephosphorylates the C terminus of the catalytic subunit of protein phosphatase 2A (PP2Ac) to increase its enzymatic activity, which further dephosphorylates deoxycytidine kinase (DCK) at Ser74 to diminish gemcitabine efficacy. Therefore, PTEN deficiency and high phosphorylation of DCK predict a better response to gemcitabine-based chemotherapy in CCA. We speculate that the combination of PP2A inhibitor and gemcitabine in PTEN-positive tumors could avoid the resistance of gemcitabine, which would benefit a large population of patients with cancer receiving gemcitabine or other nucleoside analogs.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Phosphorylation , Gemcitabine , Nucleosides , Bile Ducts, Intrahepatic , PTEN Phosphohydrolase
4.
Gastroenterology ; 164(3): 424-438, 2023 03.
Article in English | MEDLINE | ID: mdl-36436593

ABSTRACT

BACKGROUND & AIMS: In eukaryotes, the ubiquitin-proteasome system and the autophagy-lysosome pathway are essential for maintaining cellular proteostasis and associated with cancer progression. Our previous studies have demonstrated that phosphatase and tensin homolog (PTEN), one of the most frequently mutated genes in human cancers, limits proteasome abundance and determines chemosensitivity to proteasome inhibitors in cholangiocarcinoma (CCA). However, whether PTEN regulates the lysosome pathway remains unclear. METHODS: We tested the effects of PTEN on lysosome biogenesis and exosome secretion using loss- and gain-of-function strategies in CCA cell lines. Using in vitro dephosphorylation assays, we explored the regulatory mechanism between PTEN and the key regulator of lysosome biogenesis, transcription factor EB (TFEB). Using the migration assays, invasion assays, and trans-splenic liver metastasis mouse models, we evaluated the function of PTEN deficiency, TFEB-mediated lysosome biogenesis, and exosome secretion on tumor metastasis. Moreover, we investigated the clinical significance of PTEN expression and exosome secretion by retrospective analysis. RESULTS: PTEN facilitated lysosome biogenesis and acidification through its protein phosphatase activity to dephosphorylate TFEB at Ser211. Notably, PTEN deficiency increased exosome secretion by reducing lysosome-mediated degradation of multi-vesicular bodies, which further facilitated the proliferation and invasion of CCA. TFEB agonist curcumin analog C1 restrained the metastatic phenotype caused by PTEN deficiency in mouse models, and we highlighted the correlation between PTEN deficiency and exosome secretion in clinical cohorts. CONCLUSIONS: In CCA, PTEN deficiency impairs lysosome biogenesis to facilitate exosome secretion and cancer metastasis in a TFEB phosphorylation-dependent manner.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Cholangiocarcinoma , Exosomes , PTEN Phosphohydrolase , Animals , Humans , Mice , Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cholangiocarcinoma/metabolism , Disease Models, Animal , Exosomes/metabolism , Lysosomes/physiology , Proteasome Endopeptidase Complex , PTEN Phosphohydrolase/metabolism , Retrospective Studies
5.
Cancer Lett ; 501: 187-199, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33220333

ABSTRACT

Gallbladder cancer (GBC) is an aggressive malignancy of biliary tract with poor prognosis. Although several studies have shown the frequency of relevant genetic alterations, there are few genetic models or translational studies that really benefit for GBC treatment in the era of precision medicine. By targeted sequencing and immunohistochemistry staining, we identified that phosphate and tension homology deleted on chromosome ten (PTEN) was frequently altered in GBC specimens, and loss of PTEN expression was independently correlated with poor survival outcomes. Further drug screening assays revealed proteasome inhibitor bortezomib as a promising agent for GBC treatment, and knockdown of PTEN increased bortezomib efficacy both in vivo and in vitro. Therapeutic evaluation of patient derived xenografts (PDXs) strongly supported the utilization of bortezomib in PTEN deficient GBC. Mechanically, functional PTEN inhibited ARE-dependent transcriptional activity, the same machinery regulating the transcription of proteasome subunits, thus PTEN suppressed proteasome activity and bortezomib sensitivity. Through siRNA screening, we identified the ARE-related transcriptional suppressor BACH1 involved in PTEN-mediated proteasome inhibition and regulated by PTEN-AKT1 axis. In summary, our study indicates that proteasome activity represents a prime therapeutic target in PTEN-deficient GBC tumors, which is worthy of further clinical validation.


Subject(s)
Bortezomib/administration & dosage , Down-Regulation , Gallbladder Neoplasms/drug therapy , Mutation , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Adult , Aged , Animals , Bortezomib/pharmacology , Cell Line, Tumor , Female , Gallbladder Neoplasms/genetics , Gallbladder Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Male , Mice , Middle Aged , Proteasome Endopeptidase Complex/metabolism , Survival Analysis , Xenograft Model Antitumor Assays , Young Adult
6.
Sci Transl Med ; 12(562)2020 09 23.
Article in English | MEDLINE | ID: mdl-32967970

ABSTRACT

Patient-derived xenografts (PDXs) and PDX-derived cells (PDCs) are useful in preclinical research. We performed a drug screening assay using PDCs and identified proteasome inhibitors as promising drugs for cholangiocarcinoma (CCA) treatment. Furthermore, we determined that phosphate and tensin homology deleted on chromosome ten (PTEN) deficiency promotes protein synthesis and proteasome subunit expression and proteolytic activity, creating a dependency on the proteasome for cancer cell growth and survival. Thus, targeting the proteasome machinery with the inhibitor bortezomib inhibited the proliferation and survival of CCA cells lacking functional PTEN. Therapeutic evaluation of PDXs, autochthonous mouse models, and patients confirmed this dependency on the proteasome. Mechanistically, we found that PTEN promoted the nuclear translocation of FOXO1, resulting in the increased expression of BACH1 and MAFF BACH1 and MAFF are transcriptional regulators that recognize the antioxidant response element, which is present in genes encoding proteasome subunits. PTEN induced the accumulation and nuclear translocation of these proteins, which directly repressed the transcription of genes encoding proteasome subunits. We revealed that the PTEN-proteasome axis is a potential target for therapy in PTEN-deficient CCA and other PTEN-deficient cancers.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Animals , Bile Duct Neoplasms/drug therapy , Bile Ducts, Intrahepatic , Bortezomib/pharmacology , Bortezomib/therapeutic use , Cell Line, Tumor , Cholangiocarcinoma/drug therapy , Humans , Mice , PTEN Phosphohydrolase/genetics , Proteasome Endopeptidase Complex
7.
Biochem Pharmacol ; 177: 113947, 2020 07.
Article in English | MEDLINE | ID: mdl-32247850

ABSTRACT

Necroptosis is a form of programmed, caspase-independent cell death that is involved in various pathologic disorders such as ischemia/reperfusion injury, acute kidney injury and inflammatory bowel diseases. Identification of necroptosis inhibitors has great therapeutic potential for the treatment of necroptosis-associated diseases. In this study, we identified that the Bcr-Abl inhibitor GNF-7 was a potent inhibitor of necroptosis. GNF-7 inhibited necroptosis in both human and mouse cells, while not protecting cells from apoptosis. Drug affinity responsive target stability assay (DARTS) demonstrated that it binded with RIPK1 and RIPK3. GNF-7 inhibited RIPK1 and RIPK3 kinase activities and thus disrupted RIPK1-RIPK3 necrosome complex formation. In vivo, GNF-7 ameliorated both cisplatin- and ischemia/reperfusion-induced AKI. Orally administration of GNF-7 attenuated renal cell necrosis and reduced pro-inflammatory responses in mouse models of AKI. Taken together, our study shows that GNF-7 is a novel necroptosis inhibitor and has great potential for the treatment of acute renal inflammatory disorders by targeting both RIPK1 and RIPK3 kinases.


Subject(s)
Acute Kidney Injury/prevention & control , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Fusion Proteins, bcr-abl/antagonists & inhibitors , Pyrimidinones/pharmacology , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Acute Kidney Injury/chemically induced , Acute Kidney Injury/metabolism , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/toxicity , Apoptosis/drug effects , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Cell Line, Tumor , Cells, Cultured , Cisplatin/pharmacology , Cisplatin/toxicity , Fusion Proteins, bcr-abl/metabolism , HT29 Cells , Humans , Male , Mice, Inbred C57BL , Molecular Structure , Necroptosis/drug effects , Protein Kinase Inhibitors/pharmacology , Pyrimidinones/chemistry , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , U937 Cells
8.
Hepatology ; 71(6): 2005-2022, 2020 06.
Article in English | MEDLINE | ID: mdl-31541481

ABSTRACT

BACKGROUND AND AIMS: Cancer cell survival depends on the balance between reactive oxygen species production and scavenging, which is regulated primarily by NRF2 during tumorigenesis. Here, we demonstrate that deletion of RBP5-mediating protein (RMP) in an autonomous mouse model of intrahepatic cholangiocarcinoma (ICC) delays tumor progression. APPROACH AND RESULTS: RMP-overexpressing tumor cells exhibited enhanced tolerance to oxidative stress and apoptosis. Mechanistically, RMP competes with NRF2 for binding to the Kelch domain of KEAP1 (Kelch-like ECH-associated protein 1) through the E**E motif, leading to decreased NRF2 degradation via ubiquitination, thus increasing NRF2 nuclear translocation and downstream transactivation of antioxidant genes. This RMP-KEAP1-NRF2 axis promotes ICC tumorigenesis, metastasis, and drug resistance. Consistent with these findings, the RMP level in human ICC is positively correlated with the protein level of NRF2 and is associated with poor prognosis. CONCLUSION: These findings reveal that RMP is involved in the oxidative stress defense program and could be exploited for targeted cancer therapies.


Subject(s)
Carcinogenesis , Cholangiocarcinoma/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Repressor Proteins/metabolism , Animals , Apoptosis , Carcinogenesis/drug effects , Carcinogenesis/metabolism , Cell Line , Cell Transformation, Neoplastic/metabolism , Cholangiocarcinoma/pathology , Drug Resistance, Neoplasm , Humans , Mice , Oxidative Stress
9.
Hepatobiliary Pancreat Dis Int ; 18(6): 525-531, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31564506

ABSTRACT

BACKGROUND: Increasing evidence indicates that Six2 contributes to tumorigenesis in various tumor including hepatocellular carcinoma (HCC). This study aimed to determine the role of Six2 in HCC and to elucidate the association of Six2 with clinical pathological characteristics. METHODS: The expressions of Six2 in HCC tumor, para-tumor tissue and portal vein tumor thrombus (PVTT) were detected by tissue microarray technique, immunohistochemistry, real-time RT-PCR and Western blotting. Chi-square and Kaplan-Meier analysis were used to analyze the correlation between Six2 expression and prognosis of HCC patients. Lentivirus mediated Six2 knockdown, spheroid formation assay, proliferation assay and subcutaneous tumor implantation were performed to determine the function of Six2. RESULTS: In 274 HCC samples, Six2 was strongly expressed. Kaplan-Meier analysis revealed that high expression of Six2 was correlated with a shorter overall survival (OS) and disease-free survival (DFS). Moreover, Six2 expression was associated with sex, alpha-fetoprotein, tumor size and portal vein invasion. Six2 was highly expressed in PVTT. Six2 knockdown inhibited HCC cell lines proliferation, migration, and self-renewal in vitro and in vivo. In addition, low-expression of Six2 weakened TGF-ß induced Smad4 activation and epithelial-mesenchymal transition in HCC cell lines. CONCLUSIONS: Elevated Six2 expression in HCC tumor patients was associated with negative prognosis. Upregulated Six2 promoted tumor growth and facilitated HCC metastasis via TGF-ß/Smad signal pathway.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Epithelial-Mesenchymal Transition , Homeodomain Proteins/metabolism , Liver Neoplasms/metabolism , Nerve Tissue Proteins/metabolism , Smad4 Protein/metabolism , Transforming Growth Factor beta/metabolism , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Disease-Free Survival , Female , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/genetics , Humans , Liver Neoplasms/genetics , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Male , Mice, Nude , Middle Aged , Neoplasm Invasiveness , Nerve Tissue Proteins/genetics , Tumor Burden , Up-Regulation
10.
Biochim Biophys Acta Rev Cancer ; 1871(2): 259-266, 2019 04.
Article in English | MEDLINE | ID: mdl-30716362

ABSTRACT

Necroptosis is a programmed, caspase-independent cell death that is morphologically similar to necrosis. Unlike apoptosis, necroptosis evokes inflammatory responses by releasing damage-associated molecular patterns. Recent studies suggest that tumor undergoes necroptosis in vivo and necroptosis has pro- or anti-tumoral effects in cancer development and progression. Furthermore, triggering necroptosis in tumor cells has been explored as a potential therapeutic strategy against cancer. Here, we will review the recent research progress of necroptosis in conferring anti- or pro-tumoral effects and its potential application in cancer therapy.


Subject(s)
Cell Death/physiology , Neoplasms/pathology , Animals , Humans , Necrosis/pathology
11.
Theranostics ; 8(12): 3268-3274, 2018.
Article in English | MEDLINE | ID: mdl-29930728

ABSTRACT

The ability of chemical tools to effectively detect malignancy in frozen sections removed from patients during surgery is important for the timely determination of the subsequent surgical program. However, current clinical methods for tissue imaging rely on dye-based staining or antibody-based techniques, which are sluggish and complicated. Methods: Here, we have developed a 2D material-based supramolecular imaging probe for the simple, rapid yet precise diagnosis of hepatocellular carcinoma (HCC). The 2D probe is constructed through supramolecular self-assembly between a water soluble, fluorescent peptide ligand that selectively targets glypican-3 (GPC-3, a specific cell-surface biomarker for HCC) and 2D molybdenum disulfide that acts as a fluorescence quencher as well as imaging enhancer. Results: We show that the 2D imaging probe developed with minimal background fluorescence can sensitively and selectively image cells overexpressing GPC-3 over a range of control cells expressing other membrane proteins. Importantly, we demonstrate that the 2D probe is capable of rapidly (signal became readable within 1 min) imaging HCC tissues over para-carcinoma regions in frozen sections derived from HCC patients; the results are in accordance with those obtained using traditional clinical staining methods. Conclusion: Compared to conventional staining methods, which are laborious (e.g., over 30 min is needed for antibody-based immunosorbent assays) and complex (e.g., diagnosis is based on discrimination of the nucleus morphology of cancer cells from that of normal cells), our probe, with its simplicity and quickness, might become a promising candidate for tumor-section staining as well as fluorescence imaging-guided surgery.


Subject(s)
Biomarkers, Tumor/analysis , Carcinoma, Hepatocellular/diagnosis , Diagnostic Tests, Routine/methods , Glypicans/analysis , Liver Neoplasms/diagnosis , Molecular Imaging/methods , Pathology, Surgical/methods , Humans , Time Factors
12.
Cancer Lett ; 421: 161-169, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29452147

ABSTRACT

Kras mutations are among the most common genetic abnormalities in human neoplasms, including cholangiocarcinomas, pancreatic cancer and colon cancer. PTEN has previously been associated with cholangiocarcinoma development in murine models. Here, we have established novel mouse models of neoplasms by liver-specific and biliary-pancreatic Kras activation and PTEN deletion. By liver-specific disruption of PTEN and activation of Kras in mice caused rapid development of intrahepatic biliary epithelial proliferative lesions (Intrahepatic cholangiocarcinoma, ICC), which progress through dysplasia to invasive carcinoma. In contrast, Kras activation in combination with heterozygous PTEN deletion induced mixed carcinomas of liver (both ICC and hepatocellular carcinoma, HCC), whereas Kras activation alone did not induce biliary tract neoplasm. Use of Sox9-Cre-LoxP-based approach to coordinately delete PTEN and activate Kras in the adult mouse resulted in not only development of low-grade biliary lesions (ICC and extrahepatic bile duct carcinoma, ECC) but also pancreatic carcinomas. Our data provide a functional link between PTEN gene status, hepatobiliary cell fate, and HCC, biliary carcinoma, pancreatic cancer pathogenesis, and present novel genetically engineered mouse models of PTEN loss-driven malignancy.


Subject(s)
Gene Deletion , Genes, ras , Liver Neoplasms, Experimental/pathology , PTEN Phosphohydrolase/genetics , Pancreatic Neoplasms/pathology , Animals , Liver Neoplasms, Experimental/enzymology , Liver Neoplasms, Experimental/genetics , Liver Neoplasms, Experimental/metabolism , Mice , Pancreatic Neoplasms/enzymology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Transgenes
13.
Adv Mater ; 29(5)2017 Feb.
Article in English | MEDLINE | ID: mdl-27869342

ABSTRACT

A 2D peptidosheet unravels CD47 as a potential biomarker to image hepatocarcinoma and cholangiocarcinoma cells and tissues. Supramolecular assembly between water-soluble 2D MoS2 and a peptide probe produces the 2D peptidosheet suited for the profiling of hepatocarcinoma and cholangiocarcinoma tissues over healthy tissues on clinical specimens.


Subject(s)
CD47 Antigen/chemistry , Bile Duct Neoplasms , Bile Ducts, Intrahepatic , Biomarkers, Tumor , Carcinoma, Hepatocellular , Cholangiocarcinoma , Humans , Liver Neoplasms , Peptides
15.
Nat Commun ; 7: 12992, 2016 10 05.
Article in English | MEDLINE | ID: mdl-27703150

ABSTRACT

Hepatitis B virus (HBV) can integrate into the human genome, contributing to genomic instability and hepatocarcinogenesis. Here by conducting high-throughput viral integration detection and RNA sequencing, we identify 4,225 HBV integration events in tumour and adjacent non-tumour samples from 426 patients with HCC. We show that HBV is prone to integrate into rare fragile sites and functional genomic regions including CpG islands. We observe a distinct pattern in the preferential sites of HBV integration between tumour and non-tumour tissues. HBV insertional sites are significantly enriched in the proximity of telomeres in tumours. Recurrent HBV target genes are identified with few that overlap. The overall HBV integration frequency is much higher in tumour genomes of males than in females, with a significant enrichment of integration into chromosome 17. Furthermore, a cirrhosis-dependent HBV integration pattern is observed, affecting distinct targeted genes. Our data suggest that HBV integration has a high potential to drive oncogenic transformation.


Subject(s)
Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/virology , Hepatitis B virus/physiology , Liver Neoplasms/genetics , Liver Neoplasms/virology , Cell Transformation, Neoplastic , CpG Islands , DNA, Viral/genetics , Female , Genome, Human , Genome, Viral , Hepatitis B, Chronic/genetics , Humans , Kaplan-Meier Estimate , Liver Cirrhosis/genetics , Liver Cirrhosis/virology , Male , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA , Sequence Analysis, RNA , Virus Integration
16.
J Hepatol ; 65(2): 314-24, 2016 08.
Article in English | MEDLINE | ID: mdl-27154061

ABSTRACT

BACKGROUND & AIMS: Considerable evidence suggests that adrenergic signaling played an essential role in tumor progression. However, its role in hepatocellular carcinoma (HCC) and the underlying mechanisms remain unknown. METHODS: The effect of adrenaline in hepatocarcinogenesis was observed in a classical diethylnitrosamine-induced HCC mouse model. Effects of ADRB2 signaling inhibition in HCC cell lines were analyzed in proliferation, apoptosis, colony formation assays. Autophagy regulation by ADRB2 was assessed in immunoblotting, immunofluorescence and immunoprecipitation assays. In vivo tumorigenic properties and anticancer effects of sorafenib were examined in nude mice. Expression levels of ADRB2 and hypoxia-inducible factor-1α (HIF1α) in 150 human HCC samples were evaluated by immunohistochemistry. RESULTS: We uncovered that adrenaline promoted DEN-induced hepatocarcinogenesis, which was reversed by the ADRB2 antagonist ICI118,551. ADRB2 signaling also played an essential role in sustaining HCC cell proliferation and survival. Notably, ADRB2 signaling negatively regulated autophagy by disrupting Beclin1/VPS34/Atg14 complex in an Akt-dependent manner, leading to HIF1α stabilization, reprogramming of HCC cells glucose metabolism, and the acquisition of resistance to sorafenib. Conversely, inhibition of ADRB2 signaling by ICI118,551, or knockdown ADRB2 expression, led to enhanced autophagy, HIF1α destabilization, tumor growth suppression, and improved anti-tumor activity of sorafenib. Consistently, ADRB2 expression correlated positively with HIF1α in HCC specimens and was associated with HCC outcomes. CONCLUSIONS: Our results uncover an important role of ADRB2 signaling in regulating HCC progression. Given the efficacy of ADRB2 modulation on HCC inhibition and sorafenib resistance, adrenoceptor antagonist appears to be a putative novel treatment for HCC and chemoresistance. LAY SUMMARY: ADRB2 signaling played an essential role in sustaining hepatocellular carcinoma cell proliferation and survival. ADRB2 signaling negatively regulated autophagy, leading to hypoxia-inducible factor-1α stabilization, reprogramming of hepatocellular carcinoma cells glucose metabolism, and the acquisition of resistance to sorafenib. Adrenoceptor antagonist appears to be a putative novel treatment for hepatocellular carcinoma and chemoresistance.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Autophagy , Disease Progression , Drug Resistance, Neoplasm , Humans , Mice , Mice, Nude , Niacinamide/analogs & derivatives , Phenylurea Compounds , Receptors, Adrenergic, beta-2 , Signal Transduction , Sorafenib
17.
J Exp Med ; 213(5): 859-75, 2016 05 02.
Article in English | MEDLINE | ID: mdl-27091842

ABSTRACT

Oxidative stress status has a key role in hepatocellular carcinoma (HCC) development and progression. Normally, reactive oxygen species (ROS) levels are tightly controlled by an inducible antioxidant program that responds to cellular stressors. How HCC cells respond to excessive oxidative stress remains elusive. Here, we identified a feedback loop between gankyrin, an oncoprotein overexpressed in human HCC, and Nrf2 maintaining the homeostasis in HCC cells. Mechanistically, gankyrin was found to interact with the Kelch domain of Keap1 and effectively competed with Nrf2 for Keap1 binding. Increased expression of gankyrin in HCC cells blocked the binding between Nrf2 and Keap1, inhibiting the degradation of Nrf2 by proteasome. Interestingly, accumulation and translocation of Nrf2 increased the transcription of gankyrin through binding to the ARE elements in the promoter of gankyrin. The positive feedback regulation involving gankyrin and Nrf2 modulates a series of antioxidant enzymes, thereby lowering intracellular ROS and conferring a steadier intracellular environment, which prevents mitochondrial damage and cell death induced by excessive oxidative stress. Our results indicate that gankyrin is a regulator of cellular redox homeostasis and provide a link between oxidative stress and the development of HCC.


Subject(s)
Carcinoma, Hepatocellular/immunology , Liver Neoplasms/immunology , NF-E2-Related Factor 2/immunology , Proteasome Endopeptidase Complex/immunology , Proteolysis , Proto-Oncogene Proteins/immunology , Signal Transduction/immunology , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Humans , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/immunology , Liver Neoplasms/genetics , NF-E2-Related Factor 2/genetics , Oxidative Stress/genetics , Oxidative Stress/immunology , Proteasome Endopeptidase Complex/genetics , Proto-Oncogene Proteins/genetics , Reactive Oxygen Species/immunology , Response Elements/immunology , Signal Transduction/genetics
18.
Oncotarget ; 6(5): 3432-42, 2015 Feb 20.
Article in English | MEDLINE | ID: mdl-25605019

ABSTRACT

Adjuvant transcatheter arterial chemoembolization (TACE) protects against hepatocellular carcinoma (HCC) and is associated with reduced disease recurrence and improved outcome after surgery. However, deterioration of liver function after TACE negatively impacts the patient prognosis and limits it use as an option to prolong survival. We analyzed two independent cohorts that included a total of 510 patients with HCC who had undergone tumor resection. Immunohistochemistry assay was used to measure RPB5-mediating protein (RMP) expression and assessed their association with recurrence rate and response to therapy with adjuvant TACE. In patients with HCC, the expression of RMP in tumor is associated with age, gender, tumor size, portal venous invasion, TNM stages, BCLC stages and overall survival. Among patients with high RMP expression, adjuvant TACE after resection was associated with early recurrence. Even in the patients with small tumor size (no more than 5 cm) or no venous invasion, RMP status is associated with response to adjuvant TACE. RMP status in tumors may be a useful marker in estimating prognosis in patients with HCC and in assisting in the selection of patients who are likely to benefit from adjuvant TACE to prevent relapse.


Subject(s)
Biomarkers, Tumor/analysis , Carcinoma, Hepatocellular/chemistry , Carcinoma, Hepatocellular/therapy , Chemoembolization, Therapeutic , Intracellular Signaling Peptides and Proteins/analysis , Liver Neoplasms/chemistry , Liver Neoplasms/therapy , Adult , Aged , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Chemotherapy, Adjuvant , Disease-Free Survival , Female , Hepatectomy , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Male , Middle Aged , Multivariate Analysis , Neoplasm Recurrence, Local , Patient Selection , Predictive Value of Tests , Proportional Hazards Models , Repressor Proteins , Risk Factors , Time Factors , Treatment Outcome , Young Adult
19.
Nat Commun ; 5: 5256, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25348021

ABSTRACT

Increasing evidence suggests that TLR4 expression by tumour cells promotes tumour progression, but it is unclear whether TLR4 is involved in metastasis. Here we show that TLR4 deficiency significantly diminishes experimental lung metastasis without affecting primary tumour growth. Bone marrow transplantation experiment and application of antiplatelet agents in mice demonstrate that TLR4 on platelets plays an important role in metastasis. TLR4 is critical for platelet-tumour cell interaction in vitro. Furthermore, high-mobility group box1 (HMGB1) neutralization attenuates platelet-tumour cell interaction in vitro and metastasis in vivo in a TLR4-dependent manner, indicating that tumour cell-released HMGB1 is the key factor that interacts with TLR4 on platelets and mediates platelet-tumour cell interaction, which promotes metastasis. These findings demonstrate a mechanism by which platelets promote tumour cell metastasis and suggest TLR4, and its endogenous ligand HMGB1 as targets for antimetastatic therapies.


Subject(s)
Blood Platelets/metabolism , Carcinoma, Lewis Lung/pathology , Cell Communication , HMGB1 Protein/metabolism , Melanoma, Experimental/pathology , Toll-Like Receptor 4/metabolism , Animals , Cell Communication/drug effects , Cell Line, Tumor , Enzyme-Linked Immunosorbent Assay , Hematopoiesis/drug effects , Male , Mice, Inbred C57BL , Neoplasm Metastasis , Platelet Adhesiveness/drug effects , Platelet Aggregation Inhibitors/pharmacology , Protein Binding/drug effects , Toll-Like Receptor 4/deficiency
20.
Cancer ; 120(10): 1520-31, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24863391

ABSTRACT

BACKGROUND: The functions of cytoskeleton-associated membrane protein 4 (CKAP4), one kind of type II transmembrane protein, are associated with the palmitoyl acyltransferase DHHC2. The objective of the current study was to investigate CKAP4/DHHC2 expression and its prognostic significance in patients with hepatocellular carcinoma (HCC). METHODS: Two independent cohorts of 416 patients with HCC were enrolled. All the patients included had defined clinicopathologic and follow-up data. Using real-time polymerase chain reaction and immunohistochemical assay, CKAP4 and DHHC2 expression were evaluated. The association between CKAP4/DHHC2 expression and HCC-specific disease-free survival and overall survival was analyzed by Kaplan-Meier curves, the log-rank test, and Multivariate Cox regression analyses. RESULTS: The data documented that CKAP4 expression was much higher in HCC tumor tissues compared with adjacent normal tissues and its expression was significantly correlated with tumor size, intrahepatic metastases, portal venous invasion, and Barcelona Clinic Liver Cancer stage of disease in 2 cohorts of patients. On survival analysis, patients with high CKAP4 expression appeared to have a favorable overall survival and a longer disease-free survival compared with those with low expression. DHHC2 expression was also examined in tissue microarray analysis by immunohistochemistry and the results demonstrated that 87.6% of the cases had low expression of DHHC2. Kaplan-Meier analysis indicated that a high level of DHHC2 expression predicted favorable overall survival and disease-free survival rates in both the training cohort and validation set. Furthermore, the combination of CKAP4 and DHHC2 was found to have a more powerful efficiency in prognosis prediction than either one alone. CONCLUSIONS: To the best of our knowledge, the current study is the first to demonstrate that the expression of CKAP4 and its palmitoyl acyltransferase DHHC2 correlates with disease progression and metastasis in patients with HCC and may provide prognostic and therapeutic value.


Subject(s)
Acyltransferases/analysis , Biomarkers, Tumor/analysis , Carcinoma, Hepatocellular/chemistry , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/chemistry , Liver Neoplasms/pathology , Membrane Proteins/analysis , Tumor Suppressor Proteins/analysis , Adult , Aged , Biomarkers, Tumor/blood , Blotting, Western , China , Cohort Studies , Disease-Free Survival , Female , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Male , Middle Aged , Multivariate Analysis , Neoplasm Grading , Neoplasm Invasiveness , Neoplasm Staging , Palmitic Acid/metabolism , Portal Vein/pathology , Predictive Value of Tests , Prognosis , Proportional Hazards Models , Real-Time Polymerase Chain Reaction , Tissue Array Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...