Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Sci (China) ; 140: 2-11, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38331500

ABSTRACT

In2O3 has been found a promising application in CO2 hydrogenation to methanol, which is beneficial to the utilization of CO2. The oxygen vacancy (Ov) site is identified as the catalytic active center of this reaction. However, there remains a great challenge to understand the relations between the state of oxygen species in In2O3 and the catalytic performance for CO2 hydrogenation to methanol. In the present work, we compare the properties of multiple In2O3 and Ir-promoted In2O3 (Ir-In2O3) catalysts with different Ir loadings and after being pretreated under different reduction temperatures. The CO2 conversion rate of Ir-In2O3 is more promoted than that of pure In2O3. With only a small amount of Ir loading, the highly dispersed Ir species on In2O3 increase the concentration of Ov sites and enhance the activity. By finely tuning the catalyst structure, Ir-In2O3 with an Ir loading of 0.16 wt.% and pre-reduction treatment under 300°C exhibits the highest methanol yield of 146 mgCH3OH/(gcat·hr). Characterizations of Raman, electron paramagnetic resonance, X-ray photoelectron spectroscopy, CO2-temperature programmed desorption and CO2-pulse adsorption for the catalysts confirm that more Ov sites can be generated under higher reduction temperature, which will induce a facile CO2 adsorption and desorption cycle. Higher performance for methanol production requires an adequate dynamic balance among the surface oxygen atoms and vacancies, which guides us to find more suitable conditions for catalyst pretreatment and reaction.


Subject(s)
Carbon Dioxide , Methanol , Hydrogenation , Catalysis , Oxygen
2.
J Am Chem Soc ; 145(28): 15600-15610, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37418344

ABSTRACT

Single-atom catalysts with a well-defined metal center open unique opportunities for exploring the catalytically active site and reaction mechanism of chemical reactions. However, understanding of the electronic and structural dynamics of single-atom catalytic centers under reaction conditions is still limited due to the challenge of combining operando techniques that are sensitive to such sites and model single-atom systems. Herein, supported by state-of-the-art operando techniques, we provide an in-depth study of the dynamic structural and electronic evolution during the electrochemical CO2 reduction reaction (CO2RR) of a model catalyst comprising iron only as a high-spin (HS) Fe(III)N4 center in its resting state. Operando 57Fe Mössbauer and X-ray absorption spectroscopies clearly evidence the change from a HS Fe(III)N4 to a HS Fe(II)N4 center with decreasing potential, CO2- or Ar-saturation of the electrolyte, leading to different adsorbates and stability of the HS Fe(II)N4 center. With operando Raman spectroscopy and cyclic voltammetry, we identify that the phthalocyanine (Pc) ligand coordinating the iron cation center undergoes a redox process from Fe(II)Pc to Fe(II)Pc-. Altogether, the HS Fe(II)Pc- species is identified as the catalytic intermediate for CO2RR. Furthermore, theoretical calculations reveal that the electroreduction of the Pc ligand modifies the d-band center of the in situ generated HS Fe(II)Pc- species, resulting in an optimal binding strength to CO2 and thus boosting the catalytic performance of CO2RR. This work provides both experimental and theoretical evidence toward the electronic structural and dynamics of reactive sites in single-Fe-atom materials and shall guide the design of novel efficient catalysts for CO2RR.

3.
Opt Express ; 23(18): 23059-71, 2015 Sep 07.
Article in English | MEDLINE | ID: mdl-26368410

ABSTRACT

Data center interconnection with elastic optical network is a promising scenario to meet the high burstiness and high-bandwidth requirements of data center services. In our previous work, we implemented cross stratum optimization of optical network and application stratums resources that allows to accommodate data center services. In view of this, this study extends the data center resources to user side to enhance the end-to-end quality of service. We propose a novel data center service localization (DCSL) architecture based on virtual resource migration in software defined elastic data center optical network. A migration evaluation scheme (MES) is introduced for DCSL based on the proposed architecture. The DCSL can enhance the responsiveness to the dynamic end-to-end data center demands, and effectively reduce the blocking probability to globally optimize optical network and application resources. The overall feasibility and efficiency of the proposed architecture are experimentally verified on the control plane of our OpenFlow-based enhanced SDN testbed. The performance of MES scheme under heavy traffic load scenario is also quantitatively evaluated based on DCSL architecture in terms of path blocking probability, provisioning latency and resource utilization, compared with other provisioning scheme.

SELECTION OF CITATIONS
SEARCH DETAIL
...