Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 337: 122147, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710554

ABSTRACT

Treatment of infected wound by simultaneously eliminating bacteria and inducing angiogenesis to promote wound tissue regeneration remains a clinical challenge. Dynamic and reversable hydrogels can adapt to irregular wound beds, which have raised great attention as wound dressings. Herein, a sprayable chitosan-based hydrogel (HPC/CCS/ODex-IGF1) was developed using hydroxypropyl chitosan (HPC), caffeic acid functionalized chitosan (CCS), oxidized dextran (ODex) to crosslink through the dynamic imine bond, which was pH-responsive to the acidic microenvironment and could controllably release insulin growth factor-1 (IGF1). The HPC/CCS/ODex-IGF1 hydrogels not only showed self-healing, self-adaptable and sprayable properties, but also exhibited excellent antibacterial ability, antioxidant property, low-cytotoxicity and angiogenetic activity. In vivo experiments demonstrated that hydrogels promoted tissue regeneration and healing of bacteria-infected wound with a rate of approximately 98.4 % on day 11 by eliminating bacteria, reducing inflammatory and facilitating angiogenesis, demonstrating its great potential for wound dressing.


Subject(s)
Anti-Bacterial Agents , Chitosan , Hydrogels , Neovascularization, Physiologic , Wound Healing , Chitosan/chemistry , Chitosan/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Wound Healing/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Mice , Neovascularization, Physiologic/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Humans , Male , Insulin-Like Growth Factor I , Staphylococcus aureus/drug effects , Bandages , Wound Infection/drug therapy , Wound Infection/microbiology , Dextrans/chemistry , Dextrans/pharmacology , Angiogenesis
2.
J Environ Manage ; 329: 117074, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36586325

ABSTRACT

Resourcization has become a popular research topic for the final disposal of municipal solid waste incineration fly ash (MSWI FA). However, the current research is limited to building material preparation or valuable chloride recovery, which may cause resource waste and secondary pollution. A unique process, heat treatment with the addition of kaolin (KL), was presented to achieve complete resource utilization of MSWI FA. The physical properties of ceramsite could be improved by adding KL, and dioxin removal, heavy metals, and valuable chloride separation could be achieved via sintering at 1150 °C. The separation and purification of dust carried by the flue gas during thermal treatment (secondary fly ash) was achieved via wet separation. A building ceramsite with a compressive strength of 24.8 MPa was obtained, whereas dioxin and heavy metal toxicity were far below the standard limits. Heavy metal content was enriched by 12 times, approximately 59.6%, achieved after secondary fly ash separation and purification. A heavy metal product containing 39.5% Zn, 19.1% Pb, and chloride salt containing 41.8% KCl were obtained. This showed a high potential for the developed process to separate multiple valuable elements from ashes. This novel process will further promote the development and application of harmless and resourceful technologies for MSWI FA.


Subject(s)
Dioxins , Metals, Heavy , Refuse Disposal , Solid Waste/analysis , Coal Ash , Incineration , Kaolin , Hot Temperature , Chlorides , Metals, Heavy/analysis , Carbon , Particulate Matter
3.
Microbiol Spectr ; 10(4): e0147122, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35913211

ABSTRACT

Ralstonia solanacearum, the causative agent of bacterial wilt disease, has been a major threat to tobacco production globally. Several control methods have failed. Thus, it is imperative to find effective management for this disease. The biocontrol agent Bacillus amyloliquefaciens WS-10 displayed a significant control effect due to biofilm formation, and secretion of hydrolytic enzymes and exopolysaccharides. In addition, strain WS-10 can produce antimicrobial compounds, which was confirmed by the presence of genes encoding antimicrobial lipopeptides (fengycin, iturin, surfactin, and bacillomycinD) and polyketides (difficidin, bacilysin, bacillibactin, and bacillaene). Strain WS-10 successfully colonized tobacco plant roots and rhizosphere soil and suppressed the incidence of bacterial wilt disease up to 72.02% by reducing the R. solanacearum population dynamic in rhizosphere soil. Plant-microbe interaction was considered a key driver of disease outcome. To further explore the impact of strain WS-10 on rhizosphere microbial communities, V3-V4 and ITS1 variable regions of 16S and ITS rRNA were amplified, respectively. Results revealed that strain WS-10 influences the rhizosphere microbial communities and dramatically changed the diversity and composition of rhizosphere microbial communities. Interestingly, the relative abundance of genus Ralstonia significantly decreased when treated with strain WS-10. A complex microbial co-occurrence network was present in a diseased state, and the introduction of strain WS-10 significantly changed the structure of rhizosphere microbiota. This study suggests that strain WS-10 can be used as a novel biocontrol agent to attain sustainability in disease management due to its intense antibacterial activity, efficient colonization in the host plant, and ability to transform the microbial community structure toward a healthy state. IMPORTANCE The plant rhizosphere acts as the first line of defense against the invasion of pathogens. The perturbation in the rhizosphere microbiome is directly related to plant health and disease development. The introduction of beneficial microorganisms in the soil shifted the rhizosphere microbiome, induced resistance in plants, and suppressed the incidence of soilborne disease. Bacillus sp. is widely used as a biocontrol agent against soilborne diseases due to its ability to produce broad-spectrum antimicrobial compounds and colonization with the host plant. In our study, we found that the application of native Bacillus amyloliquefaciens WS-10 significantly suppressed the incidence of tobacco bacterial wilt disease by shifting the rhizosphere microbiome and reducing the interaction between rhizosphere microorganisms and bacterial wilt pathogen.


Subject(s)
Bacillus amyloliquefaciens , Microbiota , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Plant Diseases/microbiology , Plant Diseases/prevention & control , Rhizosphere , Soil/chemistry , Soil Microbiology , Nicotiana
4.
BMC Microbiol ; 22(1): 112, 2022 04 23.
Article in English | MEDLINE | ID: mdl-35461247

ABSTRACT

BACKGROUND: Black shank disease caused by Phytophthora nicotianae is a serious threat to flue-cured tobacco production. Whole-plant resistance is characterized by the expression of a number of pathogenesis-related proteins, genes, and the activity of different defense-related enzymes. In this study, we investigated the activity of defense-related enzymes and expression of differentially expressed proteins through the iTRAQ technique across two flue-cured tobacco cultivars, i.e., K326 and Hongda, in response to the black shank pathogen. RESULTS: Results showed that the highest disease incidence was recorded in flue-cured tobacco cultivar Hongda compared with K326, which shows that Hongda is more susceptible to P. nicotianae than K326. A total of 4274 differentially expressed proteins were detected at 0 h and after 24 h, 72 h of post-inoculation with P. nicotianae. We found that 17 proteins induced after inoculation with P. nicotianae, including pathogenesis (5), photosynthesis (3), oxidative phosphorylation (6), tricarboxylic acid cycle (1), heat shock (1), and 14-3-3 (1) and were involved in the resistance of flue-cured tobacco against black shank disease. The expression of 5 pathogenesis-related proteins and the activities of defense-related enzymes (PPO, POD, SOD, and MDA) were significantly higher in the leaves of K326 than Hongda after inoculation with P. nicotianae. CONCLUSION: These results provide new molecular insights into flue-cured tobacco responses to P. nicotianae. It is concluded that differences in protein expressions and defense-related enzymes play an important role in developing resistance in flue-cured tobacco cultivars against black shank disease.


Subject(s)
Phytophthora , Plant Diseases/genetics , Plant Leaves , Nicotiana/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...