Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Environ Geochem Health ; 40(4): 1541-1555, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29350354

ABSTRACT

As an accumulation of solid organic and inorganic pollutant particles on outdoor ground surfaces, road dust is an important carrier of heavy metal contaminants and can be a valuable medium for characterizing urban environmental quality. Because the dusts can be an important source of atmospheric particles and take impact on human health, the aim of this study described in detail the mineralogical characteristics, morphology, and heavy metal content of road dust from Xuanwei and Fuyuan, locations with high lung cancer incidence. Our results show that the average concentrations of heavy metals in road dust were higher than their background values. Higher concentrations of heavy metals were found in the magnetic fractions (MFs) than in the non-magnetic fractions (NMFs). Magnetic measurements revealed high magnetic susceptibility values in the road dust samples, and the dominant magnetic carrier was magnetite. The magnetic grains were predominantly pseudo-single domain, multi-domain, and coarse-grained stable single domains (coarse SSD) in size. SEM/XRD analysis identified two groups of magnetic particles: spherules and angular/aggregate particles. Hazard index (HI) values for adults exposure to road dust samples, including MF, Bulk, and NMF, in both areas were lower or close to safe levels, while HI values for childhood exposure to magnetic fractions in both areas were very close or higher than safe levels. Cancer risks from road dust exposure in both areas were in the acceptable value range.


Subject(s)
Dust/analysis , Environmental Monitoring/methods , Magnetics , Risk Assessment/methods , Transportation , China
2.
Chemosphere ; 186: 278-286, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28783549

ABSTRACT

Coal combustion particles (CCPs) are linked to the high incidence of lung cancer in Xuanwei and in Fuyuan, China, but studies on the chemical composition of the CCPs are still limited. Single particle aerosol mass spectrometry (SPAMS) was recently developed to measure the chemical composition and size of single particles in real-time. In this study, SPAMS was used to measure individual combustion particles emitted from Xuanwei and Fuyuan coal samples and the results were compared with those by ICP-MS and transmission electron microscopy (TEM). The total of 38,372 particles mass-analyzed by SPAMS can be divided into 9 groups based on their chemical composition and their number percentages: carbonaceous, Na-rich, K-rich, Al-rich, Fe-rich, Si-rich, Ca-rich, heavy metal-bearing, and PAH-bearing particles. The carbonaceous and PAH-bearing particles are enriched in the size range below 0.56 µm, Fe-bearing particles range from 0.56 to 1.0 µm in size, and heavy metals such as Ti, V, Cr, Cu, Zn, and Pb have diameters below 1 µm. The TEM results show that the particles from Xuanwei and Fuyuan coal combustion can be classified into soot aggregates, Fe-rich particles, heavy metal containing particles, and mineral particles. Non-volatile particles detected by SPAMS could also be observed with TEM. The number percentages by SPAMS also correlate with the mass concentrations measured by ICP-MS. Our results could provide valuable insight for understanding high lung cancer incidence in the area.


Subject(s)
Air Pollutants/analysis , Coal/toxicity , Lung Neoplasms/etiology , Particulate Matter/analysis , Aerosols/analysis , Air Pollutants/toxicity , Carbon/analysis , China/epidemiology , Humans , Lung Neoplasms/epidemiology , Mass Spectrometry/methods , Metals, Heavy/analysis , Microscopy, Electron, Transmission , Particle Size , Particulate Matter/toxicity , Polycyclic Aromatic Hydrocarbons/analysis
3.
Huan Jing Ke Xue ; 38(6): 2273-2279, 2017 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-29965343

ABSTRACT

Many reports have claimed that high lung cancer mortality rate in Xuanwei is associated with the residential coal combustion. Considering iron is the main chemical element in the particles emitted from Xuanwei coal combustion, and especially, reactive oxygen species (ROS) could be generated by redox-active transition metals (TM) such as iron (Fe) in particles, therefore, raw coal samples from 4 coal mines in Xuanwei were sampled, and size-resolved particles emitted from the raw coal samples were collected by using of Andersen Five-stage High Volume Sampler. Species of iron in the raw coal sample, size-resolved particles and bottom ashes were analyzed by BCR sequential extraction method (community bureau of reference, BCR). The generation potential of·OH free radicals from coal emission particles in the surrogate lung fluid (SLF) solution was measured by using high pressure liquid chromatography (HPLC). Our results demonstrated that a large fraction of oxidizable Fe could be found in raw coal samples. However, the acid extractable, reducible and oxidizable fractions of Fe in the fly ash particles accounted for a large proportion (46%-78%) in the size-resolved particles after coal combustion. There was difference in levels of·OH free radicals generated from coal emission particles in the SLF for 24 hours among particles with different sizes. The concentration of·OH increased in both fine particles (<1 µm, 1.1-2 µm, 2-3.3 µm) and coarse particles (3.3-7 µm, >7 µm) as the particles size decreased. Linear correlation could be found between the oxidizable fractions of iron and the generation of·OH in particles emitted from coal combustion (R2=0.32).

SELECTION OF CITATIONS
SEARCH DETAIL
...