Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Chem Commun (Camb) ; 58(91): 12680-12683, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36286612

ABSTRACT

2-Styrylthiophene-based donor-acceptor linear conjugated polymers with tunable cyano substituents are atom-economically obtained via direct C-H arylation for platinum-free photocatalytic hydrogen production, affording a HER of up to 9.79 mmol h-1 g-1.

2.
J Adv Res ; 39: 319-332, 2022 07.
Article in English | MEDLINE | ID: mdl-35777915

ABSTRACT

INTRODUCTION: Pharmacokinetic variability in disease state is common in clinical practice, but its underlying mechanism remains unclear. Recently, gut microbiota has been considered to be pharmacokinetically equivalent to the host liver. Although some studies have explored the roles of gut microbiota and host Cyp450s in drug pharmacokinetics, few have explored their effects on pharmacokinetic variability, especially in disease states. OBJECTIVES: In this study, we aim to investigate the effects of gut microbiota and host Cyp450s on pharmacokinetic variability in mice with non-alcoholic steatohepatitis (NASH), and to elucidate the contribution of gut microbiota and host Cyp450s to pharmacokinetic variability in this setting. METHODS: The pharmacokinetic variability of mice with NASH was explored under intragastric and intravenous administrations of a cocktail mixture of omeprazole, phenacetin, midazolam, tolbutamide, chlorzoxazone, and metoprolol, after which the results were compared with those obtained from the control group. Thereafter, the pharmacokinetic variabilities of all drugs and their relations to the changes in gut microbiota and host Cyp450s were compared and analyzed. RESULTS: The exposures of all drugs, except metoprolol, significantly increased in the NASH group under intragastric administration. However, no significant increase in the exposure of all drugs, except tolbutamide, was observed in the NASH group under intravenous administration. The pharmacokinetic variabilities of phenacetin, midazolam, omeprazole, and chlorzoxazone were mainly associated with decreased elimination activity in the gut microbiota. By contrast, the pharmacokinetic variability of tolbutamide was mainly related to the change in the host Cyp2c65. Notably, gut microbiota and host Cyp450s exerted minimal effects on the pharmacokinetic variability of metoprolol. CONCLUSION: Gut microbiota and host Cyp450s co-contribute to the pharmacokinetic variability in mice with NASH, and the degree of contribution varies from drug to drug. The present findings provide new insights into the explanation of pharmacokinetic variability in disease states.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Animals , Chlorzoxazone/pharmacology , Metoprolol/pharmacology , Mice , Midazolam/pharmacology , Non-alcoholic Fatty Liver Disease/drug therapy , Omeprazole/pharmacology , Pharmaceutical Preparations , Phenacetin/pharmacology , Tolbutamide/pharmacology
3.
Chem Sci ; 13(6): 1725-1733, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35282637

ABSTRACT

3,4-Ethylene dioxythiophene (EDOT), as a monomer of commercial conductive poly(3,4-ethylene dioxythiophene) (PEDOT), has been facilely incorporated into a series of new π-conjugated polymer-based photocatalysts, i.e., BSO2-EDOT, DBT-EDOT, Py-EDOT and DFB-EDOT, through atom-economic C-H direct arylation polymerization (DArP). The photocatalytic hydrogen production (PHP) test shows that donor-acceptor (D-A)-type BSO2-EDOT renders the highest hydrogen evolution rate (HER) among the linear conjugated polymers (CPs) ever reported. A HER up to 0.95 mmol h-1/6 mg under visible light irradiation and an unprecedented apparent quantum yield of 13.6% at 550 nm are successfully achieved. Note that the photocatalytic activities of the C-H/C-Br coupling-derived EDOT-based CPs are superior to those of their counterparts derived from the classical C-Sn/C-Br Stille coupling, demonstrating that EDOT is a promising electron-rich building block which can be facilely integrated into CP-based photocatalysts. Systematic studies reveal that the enhanced water wettability by the integration of polar BSO2 with hydrophilic EDOT, the increased electron-donating ability by O-C p-π conjugation, the improved electron transfer by D-A architecture, broad light harvesting, and the nano-sized colloidal character in a H2O/NMP mixed solvent rendered BSO2-EDOT as one of the best CP photocatalysts toward PHP.

5.
J Anal Methods Chem ; 2022: 5952436, 2022.
Article in English | MEDLINE | ID: mdl-35083093

ABSTRACT

Mice are the most frequently used animals in pharmacokinetic studies; however, collecting series of blood samples from mice is difficult because of their small sizes and tiny vessels. In addition, due to the small sample size, it is problematic to perform high required quantification. Thus, present work aims to find an effective strategy for overcoming these challenges using trans-resveratrol as a tool drug. Based on the idea of a joint technology, the capillary microsampling (CMS) was chosen for blood sample collection from mice after delivery of trans-resveratrol (150 mg/kg) by gavage, and a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed for the determination of trans-resveratrol and its main metabolites. All the mouse blood samples were exactly collected by CMS without obvious deviation. This provided credible samples for subsequent quantitative analysis. The HPLC-MS/MS method was found to be sensitive, accurate, and repeatable, and the pharmacokinetic parameters for all analytes were comparable with those reported in previous studies. However, the present joint technology offers the advantages of less animal damage, easy for sample preparation, and improved reliability. It has overcome some of the major limitations revealed in previous pharmacokinetic studies in mice and therefore provides a more effective option for future studies.

6.
Mass Spectrom Rev ; 39(5-6): 523-552, 2020 09.
Article in English | MEDLINE | ID: mdl-31904155

ABSTRACT

Personalized drug therapy aims to provide tailored treatment for individual patient. Mass spectrometry (MS) is revolutionarily involved in this area because MS is a rapid, customizable, cost-effective, and easy to be used high-throughput method with high sensitivity, specificity, and accuracy. It is driving the formation of a new field, MS-based personalized drug therapy, which currently mainly includes five subfields: therapeutic drug monitoring (TDM), pharmacogenomics (PGx), pharmacomicrobiomics, pharmacoepigenomics, and immunopeptidomics. Gas chromatography-MS (GC-MS) and liquid chromatography-MS (LC-MS) are considered as the gold standard for TDM, which can be used to optimize drug dosage. Matrix-assisted laser desorption ionization-time of flight-MS (MALDI-TOF-MS) significantly improves the capability of detecting biomacromolecule, and largely promotes the application of MS in PGx. It is becoming an indispensable tool for genotyping, which is used to discover and validate genetic biomarkers. In addition, MALDI-TOF-MS also plays important roles in identity of human microbiome whose diversity can explain interindividual differences of drug response. Pharmacoepigenetics is to study the role of epigenetic factors in individualized drug treatment. MS can be used to discover and validate pharmacoepigenetic markers (DNA methylation, histone modification, and noncoding RNA). For the emerging cancer immunotherapy, personalized cancer vaccine has effective immunotherapeutic activity in the clinic. MS-based immunopeptidomics can effectively discover and screen neoantigens. This article systematically reviewed MS-based personalized drug therapy in the above mentioned five subfields. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.


Subject(s)
Drug Monitoring/methods , Drug Therapy/methods , Mass Spectrometry/methods , Precision Medicine/methods , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents , Biomarkers, Pharmacological/analysis , DNA Methylation/drug effects , Histones/metabolism , Humans , Liquid Biopsy , Pharmacogenomic Testing/methods
7.
Dis Markers ; 2019: 2829798, 2019.
Article in English | MEDLINE | ID: mdl-31191746

ABSTRACT

The molecular mechanism for colorectal cancer to develop remains unelucidated. To find biomarkers related to colorectal cancer development, we analyzed the gene expression profile of 380 colorectal cancer patients and 51 healthy controls by R software. Finally, 1579 upregulated differential expression genes (DEGs) and 3218 downregulated DEGs were identified. Then, the top 20 upregulated DEGs were compared with 181 upregulated DEGs that we reported previously, and 11 overlapped DEGs were found. NFE2L3 (nuclear factor, erythroid 2-like 3) was among those overlapped DEGs and was rarely reported in colorectal cancer. Real-time polymerase chain reaction (PCR) results showed that higher NFE2L3 expression levels were identified in paired tumor samples than in paratumor samples (48 paired samples). Flow cytometry analysis revealed that the cell cycle was arrested at the G0/G1 phase after inhibition of NFE2L3 in both HCT116 and SW480 cell lines. Western blot detection showed that CCND1 and phosphorylated Rb transcriptional corepressor 1 at ser-807/811 (pRb1-ser807/811) expression levels were downregulated when NFE2L3 was inhibited in those two cell lines. A significant positive correlation was observed between NFE2L3 and CCND1 expression levels in colorectal tissue samples. These evidences indicate that downregulation of NFE2L3 induces cell cycle arrest at the G0/G1 phase through downregulation of CCND1 and pRb1-ser807/811.


Subject(s)
Basic-Leucine Zipper Transcription Factors/genetics , Colorectal Neoplasms/metabolism , G1 Phase Cell Cycle Checkpoints , Gene Expression Regulation, Neoplastic , Basic-Leucine Zipper Transcription Factors/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Cyclin D1/genetics , Cyclin D1/metabolism , Down-Regulation , HCT116 Cells , Humans , Salivary Proline-Rich Proteins/genetics , Salivary Proline-Rich Proteins/metabolism
8.
Biomed Chromatogr ; 33(9): e4563, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31025385

ABSTRACT

Astragali Radix (AR) is a widely used traditional Chinese medicine for healing the cardiovascular, liver and immune systems. Recently, superfine pulverizing technology has been applied to developing novel formulations to improve bioavailability of the active constituents in herbs, such as ultrafine granular powder of AR. In this study, a universal and sensitive quantitative method based on LC-MS/MS was employed for determining formononetin, the main flavonoid in AR, in human plasma for comparative pharmacokinetics of three oral formulations of AR. Formononetin and IS (quercetin) were extracted by ethyl acetate from human plasma and were separated on a C18 column with a mobile phase consisting of acetonitrile and 0.1% formic acid. Positive-ion electrospray-ionization mode was applied in mass spectrometric detection. The quantitative method was validated with regards to selectivity, linearity, accuracy and precision, matrix effect, extraction recovery and stability, and was applied to comparing the pharmacokinetics of ultrafine granular powder (UGP), ultrafine powder (UP) and traditional decoction pieces (TDP) of AR after oral administration. The peak concentration and areas under the concentration-time curve of formononetin in UGP and UP were significantly higher than those of TDP. UGP and UP could significantly improve the bioavailability of AR in human compared with TDP after oral administration.


Subject(s)
Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/pharmacokinetics , Isoflavones/blood , Isoflavones/pharmacokinetics , Tandem Mass Spectrometry/methods , Adolescent , Adult , Astragalus propinquus , Drug Stability , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/chemistry , Humans , Isoflavones/chemistry , Limit of Detection , Linear Models , Male , Reproducibility of Results , Young Adult
9.
Biomed Pharmacother ; 114: 108864, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30981107

ABSTRACT

Hepatocellular carcinoma (HCC) prognosis remains dismal due to postsurgical recurrence and distant metastasis. Therefore, novel prognostic biomarkers and therapeutic targets for HCC therapy are urgently needed to improve the survival of liver cancer patients. Our evidence suggests that SLC46A3 (the gene solute carrier family 46 (sodium phosphate), member 3) is a member of the SLC46 family and has a potential role in the progression and treatment of HCC. The objective of the present study was to estimate the expression pattern and biological function of SLC46A3 in the progression of HCC, which may serve as a promising biomarker for diagnosis and therapy. In order to determine the expression pattern of SLC46A3 in HCC, several public HCC databases and tissue chips were used to examine 129 sets of primary HCC and non-tumor adjacent tissues from patients who had undergone surgery. The expression of SLC46A3 in 80 sets of HCC and non-tumor adjacent tissues were then compared by RT-PCR and Western Blot. The proliferation, invasion, migration and sphere-forming abilities of SLC46A3 knock-down and overexpressing cell lines were evaluated and the expression of related molecules in the epithelial mesenchymal transition (EMT) were detected by RT-PCR, western blot and immunofluorescence assay. The IC50 value was used to evaluate the effect of SLC46A3 on sorafenib resistance. A lung metastasis model of mice HCC was constructed to test the potential effect of SLC46A3 on cancer metastasis and a subcutaneous xenografted tumor mice model was designed to verify the effect of SLC46A3 on the resistance of HCC cell lines to sorafenib. The expression of SLC46A3 was down-regulated in 83.2% of human HCC tissues compared to non-tumor adjacent tissues. Tumors that expressed low levels of SLC46A3 had more aggressive phenotypes, and patients with these tumors had shorter survival times after surgery compared to patients whose tumors expressed high levels of SLC46A3. Hepatocellular carcinoma cell lines that stably overexpressed SLC46A3 inhibited the levels of migration and invasion compared with control HCC cells, and formed smaller xenograft tumors with more metastases in mice compared with HCC cells that did not overexpress SLC46A3. In addition, overexpression of SLC46A3 obviously inhibited epithelial-to-mesenchymal transition-activating transcription factors such as N-cadherin and Vimentin. Furthermore, descended of IC50 showed that overexpressed SLC46A3 could reduce sorafenib resistance and improve drug response in vivo and in vitro. In conclusion, increased expression of SLC46A3 could favor a better clinical prognosis for patients with HCC, ameliorate sorafenib resistance, and improve drug response. SLC46A3 might serve as a potential prognostic biomarker and therapeutic target in HCC.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Organic Cation Transport Proteins/genetics , Sorafenib/pharmacology , Animals , Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Disease Progression , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Hep G2 Cells , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Transcription Factors/genetics
10.
Bioanalysis ; 11(5): 365-380, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30873858

ABSTRACT

AIM: Ginsenoside compound K (CK) is considered to be a potential therapeutic drug for rheumatoid arthritis because of its good anti-inflammatory activity. The purpose of this work was to establish a rapid, sensitive and specific method for determination of CK and its active metabolite 20(S)-protopanaxadiol (20(S)-PPD). Materials & methods: The analytes and internal standards were extracted by liquid-liquid extraction. Then, were separated by high performance liquid phase and determined by triple quadrupole mass spectrometry. RESULTS: A LC-MS/MS using liquid-liquid extraction was developed for determining CK over the concentration range 1.00-1002.00 ng/ml and 0.15-54.30 ng/ml for 20(S)-PPD. The lower limits of quantification for CK and 20(S)-PPD were 1.00 and 0.15 ng/ml, respectively. CONCLUSION: This method was successfully validated for detecting both CK and 20(S)-PPD in the human plasma and urine, and was proved to be suitable for the pharmacokinetic study of CK in healthy Chinese volunteers. CLINICAL TRIAL REGISTRATION NUMBER: ChiCTR-TRC-14004824.


Subject(s)
Chromatography, Liquid/methods , Ginsenosides/therapeutic use , Panax/chemistry , Sapogenins/therapeutic use , Tandem Mass Spectrometry/methods , Arthritis, Rheumatoid , Female , Ginsenosides/pharmacology , Humans , Male , Sapogenins/pharmacology
11.
Funct Integr Genomics ; 19(2): 227-236, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30343388

ABSTRACT

This study aimed to investigate the relationship between polymorphisms in the lipid metabolism-related gene PLA2G16 encoding Group XVI phospholipase A2 and the risk of colorectal cancer (CRC) in the Chinese population. A total of 185 patients with CRC and 313 healthy controls were enrolled. Thirteen single nucleotide polymorphisms (SNPs) of PLA2G16 were genotyped with SNPscan™. Linkage disequilibrium and haplotypes were analysed using Haploview software. Multivariate logistic regression was used to determine the association between the various genotypes and CRC risk. We identified five PLA2G16 SNPs (rs11600655, rs3809072, rs3809073, rs640908 and rs66475048) that were associated with CRC risk after adjusting for age, sex and body mass index. Two haplotypes (CTC and GGA) of rs11600655, rs3809073 and rs3809072, were relevant to CRC risk. The rs11600655 polymorphism was also associated with lymph node metastasis and CRC staging, while rs3809073 and rs3809072 may affect transcriptional regulation of PLA2G16 by altering transcription factor binding. These findings suggest that PLA2G16 polymorphisms-especially CTC and GGA haplotypes-increase CRC susceptibility. Importantly, we showed that the rs11600655 CC, rs640908 CT and rs66475048 GA genotypes are independent risk factors for CRC in the Chinese population.


Subject(s)
Colorectal Neoplasms/genetics , Phospholipases A2, Calcium-Independent/genetics , Polymorphism, Single Nucleotide , Tumor Suppressor Proteins/genetics , Adult , Colorectal Neoplasms/pathology , Female , Humans , Lipid Metabolism , Lymphatic Metastasis , Male , Middle Aged
12.
J Int Med Res ; 46(12): 4965-4973, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30360673

ABSTRACT

BACKGROUND: To directly achieve cytochrome P450 2C19 gene ( CYP2C19) classification using one-step real-time fluorescent PCR detection and to verify the capabilities of this method with nucleic acid extracted from whole blood samples. METHODS: A human CYP2C19 genotyping kit based on one-step real-time fluorescent PCR detection was used to analyze whole blood or genomic DNA samples. This method was compared with pyrosequencing and another quantitative (q)PCR kit for its accuracy, repeatability, detection range analysis, sensitivity, specificity, and anti-interference analysis. RESULTS: The one-step real-time PCR method achieved a 100% accuracy rate compared with pyrosequencing and the other qPCR kit. When detecting different concentrations of known genes, concentrations of each sample ranging from 0.2 to 125 ng/µL could be correctly detected. The genotypes of samples treated with anticoagulants, including EDTA and sodium citrate, and chyle blood samples could be correctly detected. CONCLUSION: The one-step detection method demonstrated high accuracy and a wide detection range. It also had high levels of repeatability, sensitivity, and specificity for the assessment of genomic DNA test samples.


Subject(s)
Acute Coronary Syndrome/diagnosis , Acute Coronary Syndrome/genetics , Cytochrome P-450 CYP2C19/genetics , DNA/analysis , Mutation , Adult , Aged , DNA/genetics , Female , Genotype , Humans , Male , Middle Aged , Prognosis , Real-Time Polymerase Chain Reaction
13.
Diabetes Metab Syndr Obes ; 11: 439-446, 2018.
Article in English | MEDLINE | ID: mdl-30174451

ABSTRACT

INTRODUCTION: The small peptide transporter 1 (PepT-1) and adipose phospholipase A2 (AdPLA) play a key role in the development of obesity. However, there are no data assessing the impact of PepT-1 (SLC15A1) and AdPLA (PLA2G16) variants on obesity susceptibility. Therefore, we assessed the contribution of 9 single-nucleotide polymorphisms (SNPs) between these two genes on obesity susceptibility in Chinese subjects. MATERIALS AND METHODS: A total of 611 participants were enrolled in the study, and 9 SNPs in the SLC15A1 and PLA2G16 genes were selected. Blood samples were collected for genotyping. Overweight and obesity were established by body mass index. Regression analyses were performed to test for any association of genetic polymorphisms with weight abnormality. RESULTS: The genotype frequencies (P=0.04 for rs9557029, P=0.027 for rs1289389) were significantly different between obese or overweight subjects and healthy controls. However, no significant difference in allele was found between these three groups (P>0.05). Further logistic regression analyses adjusted for age and sex also failed to reveal significant associations between overweight, obesity, and the selected SNPs (P>0.05). CONCLUSION: Data indicate that the selected 9 SNPs in SLC15A1 and PLA2G16 genes were not related to obesity susceptibility in the Han Chinese population.

14.
Dis Markers ; 2018: 3452739, 2018.
Article in English | MEDLINE | ID: mdl-29651323

ABSTRACT

Colorectal cancer is a malignant tumor which harmed human beings' health. The aim of this study was to explore common biomarkers associated with colorectal carcinogenesis in paired cancer and noncancer samples. At first, fifty-nine pairs of colorectal cancer and noncancer samples from three gene expression datasets were collected and analyzed. Then, 181 upregulation and 282 downregulation common differential expression genes (DEGs) were found. Next, functional annotation was performed in the DAVID database with the DEGs. Finally, real-time polymerase chain reaction (PCR) assay was conducted to verify the analyses in sixteen colorectal cancer and individual-matched adjacent mucosa samples. Real-time PCR showed that MCM2, RNASEH2A, and TOP2A were upregulated in colorectal cancer compared with adjacent mucosa samples (MCM2, P < 0.001; RNASEH2A, P < 0.001; TOP2A, P = 0.001). These suggested that 463 DEGs might contribute to colorectal carcinogenesis.


Subject(s)
Colorectal Neoplasms/genetics , Gene Expression Profiling/methods , Gene Regulatory Networks , Biomarkers, Tumor/genetics , Case-Control Studies , Gene Expression Regulation, Neoplastic , Humans , Molecular Sequence Annotation , Oligonucleotide Array Sequence Analysis
15.
Xenobiotica ; 48(10): 999-1005, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29027845

ABSTRACT

1. The accumulation of fusidic acid (FA) after multiple doses of FA has been reported on in previous studies but the related mechanisms have not been clarified fully. In the present study, we explain the mechanisms related to the mechanism-based inactivation of CYP2D6 and CYP3A4. 2. The irreversible inhibitory effects of FA on CYP2D6 and CYP3A4 were examined via a series of experiments, including: (a) time-, concentration- and NADPH-dependent inactivation, (b) substrate protection in enzyme inactivation and (c) partition ratio with recombinant human CYP enzymes. Metoprolol α-hydroxylation and midazolam 1'-hydroxylation were used as marker reactions for CYP2D6 and CYP3A4 activities, and HPLC-MS/MS measurement was also utilised. 3. FA caused to the time- and concentration-dependent inactivation of CYP2D6 and CYP3A4. About 55.8% of the activity of CYP2D6 and 75.8% of the activity of CYP3A4 were suppressed after incubation with 10 µM FA for 15 min. KI and kinact were found to be 2.87 µM and 0.033 min-1, respectively, for CYP2D6, while they were 1.95 µM and 0.029 min-1, respectively, for CYP3A4. Inhibition of CYP2D6 and CYP3A4 activity was found to require the presence of NADPH. Substrates of CYP2D6 and CYP3A4 showed that the enzymes were protected against the inactivation induced by FA. The estimated partition ratio for the inactivation was 7 for CYP2D6 and 12 for CYP3A4. 4. FA is a potent mechanism-based inhibitor of CYP2D6 and CYP3A4, which may explain the accumulation of FA in vivo.


Subject(s)
Cytochrome P-450 CYP2D6/metabolism , Cytochrome P-450 CYP3A/metabolism , Fusidic Acid/pharmacology , Enzyme Activation/drug effects , Fusidic Acid/chemistry , Humans , Kinetics , NADP/metabolism , Regression Analysis , Substrate Specificity/drug effects , Time Factors
16.
Drug Des Devel Ther ; 11: 3511-3517, 2017.
Article in English | MEDLINE | ID: mdl-29263649

ABSTRACT

The intestinal peptide transporter 1 (PepT1) was first identified in 1994. It plays a crucial role in the absorption of small peptides including not only >400 different dipeptides and 8,000 tripeptides digested from dietary proteins but also a repertoire of structurally related compounds and drugs. Owing to its critical role in the bioavailability of peptide-like drugs, such as the anti-cancer agents and anti-virus drug, PepT1 is increasingly becoming a striking prodrug-designing target. Therefore, the understanding of PepT1 gene regulation is of great importance both for dietary adaptation and for clinical drug treatment. After decades of research, it has been recognized that PepT1 could be regulated at the transcriptional and post-transcriptional levels by numerous factors. Therefore, the present review intends to summarize the progress made in the regulation of PepT1 and provide insights into the PepT1's potential in clinical aspects of nutritional and drug therapies.


Subject(s)
Peptide Transporter 1/metabolism , Animals , Gene Expression Regulation/genetics , Humans , Intestinal Mucosa/metabolism , Peptide Transporter 1/genetics
17.
Onco Targets Ther ; 10: 4739-4751, 2017.
Article in English | MEDLINE | ID: mdl-29033587

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is a widespread and aggressive carcinoma with poor prognosis. Hypermethylation of specific gene promoters is an important mechanism of CRC. In this study, we investigated the hypermethylation of paired boxed gene 1 (PAX1) and sex-determining region Y-related high-mobility group box 1 (SOX1) genes in CRC tissues. METHODS: DNA methylation at cg2,09,07,471 PAX1 and cg0,66,75,478 SOX1 from 166 cancer tissues and 37 normal tissues from CRC patients were compared using datasets downloaded from The Cancer Genome Atlas. Quantitative methylation-specific polymerase chain reaction and assay of PAX1 and SOX1 were performed in dissected tumor and paracancerous tissues by surgery from 41 CRC patients. Quantitative reverse transcription polymerase chain reaction and immunohistochemistry assay were performed in both CRC and paired normal tissues to detect mRNA and protein expression, respectively. RESULTS: Methylation levels of PAX1/SOX1 genes were significantly higher in cancer tissues than in paired normal tissues. PAX1 and SOX1 genes were methylated in 28 (68.3%) of the 41 CRC samples but in 5 (12.2%) and 0 (0%) of the paired normal control samples (both P<0.001), respectively. Sensitivities and specificities of PAX1 methylation for the detection of cancer were 68.3% and 87.8%, respectively, whereas the corresponding values for SOX1 were 68.3% and 100%. However, the Kaplan-Meier analysis illustrated no significant difference in the overall survivals between patients with high and low methylation levels of SOX1 or PAX1 (P>0.5). In addition, the methylation level of PAX1/SOX1 was significantly higher in CRC patients with high TNM stage (TNM stage III/IV, 3.11±2.43) than those with low TNM stage (TNM stage I/II, 1.26±2.94, P<0.05). Relative RNA and protein expression levels of PAX1/SOX1 were both significantly lower in CRC tissues than in their paired normal tissue. CONCLUSIONS: This study is the first analysis of the methylation of PAX1/SOX1, which may be new biomarkers for CRC screening.

18.
Sci Rep ; 7(1): 4709, 2017 07 05.
Article in English | MEDLINE | ID: mdl-28680091

ABSTRACT

Salvia miltiorrhiza (SM) is widely used to treat microcirculatory disturbance-related diseases; its lipophilic components play important roles in this application. Cryptotanshinone (CTS), tanshinone I (TSI) and tanshinone IIA (TSA) are the most widely-studied lipophilic ingredients, but low oral bioavailability limits their clinical application. It has been proven that micronization could improve the bioavailability of some drugs, so we've conducted this randomized study to investigate whether micronized granular powder (GP) of SM could improve the bioavailability of tanshinones compared with traditional decoction (TD). An oral dose of TD or GP of SM was administrated to subjects and blood samples were collected at predetermined time points. The plasma concentrations of tanshinones were detected by a validated method and pharmacokinetic parameters were calculated using a non-compartmental model. GP of SM resulted in a significant increase in mean maximum plasma concentration (C max ), elimination half-life and area under concentration-time curve (AUC) of tanshinones, with the plasma AUC of CTS, TSI and TSA in GP 5-184, 4-619 and 5-130 times higher than TD. In addition, the individual variances of C max and AUC were much lower after GP administration. Summarily, tanshinones in micronized GP of SM had higher oral bioavailability and lower individual variances, thus we speculate that it may indicate a better clinical efficacy and be a better choice than current treatments.


Subject(s)
Abietanes/pharmacokinetics , Drug Compounding/methods , Salvia miltiorrhiza/chemistry , Abietanes/administration & dosage , Administration, Oral , Adult , Biological Availability , Female , Half-Life , Healthy Volunteers , Humans , Male , Powders , Young Adult
19.
Biomed Res Int ; 2017: 4189678, 2017.
Article in English | MEDLINE | ID: mdl-28331852

ABSTRACT

Sulindac is a nonsteroidal anti-inflammatory drug, which is clinically used for the ailments of various inflammations. This study investigated the allele frequencies of FMO3 E158K and E308G and evaluated the influences of these two genetic polymorphisms on the pharmacokinetics of sulindac and its metabolites in Chinese healthy male volunteers. Eight FMO3 wild-type (FMO3 HHDD) subjects and seven FMO3 homozygotes E158K and E308G mutant (FMO3 hhdd) subjects were recruited from 247 healthy male volunteers genotyped by PCR-RFLP method. The plasma concentrations of sulindac, sulindac sulfide, and sulindac sulfone were determined by UPLC, while the pharmacokinetic parameters of the two different FMO3 genotypes were compared with each other. The frequencies of FMO3 E158K and E308G were 20.3% and 20.1%, respectively, which were in line with Hardy-Weinberg equilibrium (D' = 0.977, r2 = 0.944). The mean values of Cmax, AUC0-24, and AUC0-∞ of sulindac were significantly higher in FMO3 hhdd group than those of FMO3 HHDD group (P < 0.05), while the pharmacokinetic parameters except Tmax of sulindac sulfide and sulindac sulfone showed no statistical difference between the two groups. The two FMO3 mutants were in close linkage disequilibrium and might play an important role in the pharmacokinetics of sulindac in Chinese healthy male volunteers.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Inflammation/drug therapy , Oxygenases/genetics , Sulindac/administration & dosage , Adult , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Gene Frequency , Genotype , Healthy Volunteers , Humans , Inflammation/genetics , Linkage Disequilibrium , Male , Polymorphism, Restriction Fragment Length , Sulindac/analogs & derivatives , Sulindac/pharmacokinetics
20.
Oncotarget ; 8(63): 106962-106975, 2017 Dec 05.
Article in English | MEDLINE | ID: mdl-29291003

ABSTRACT

Diffuse gliomas is a kind of common malignant primary brain tumor. Pseudogenes have multilayered biological function in the progression of human cancers. In this study, Differentially Expressed Pseudogenes (DEPs) between glioblastomas and non-tumor controls were found by bioinformatics analysis, of which the annexin A2 pseudogenes (ANXA2P1, ANXA2P2 and ANXA2P3) were significantly up-regulated, along with the parent gene annexin A2 (ANXA2). Among four glioblastoma subtypes, ANXA2P1 and ANXA2P2 were preferentially expressed in mesenchymal subtype and less expressed in proneural subtype. Meanwhile, Pearson's correlation analysis revealed that the expression level of ANXA2 was positively correlated with ANXA2 pseudogenes expression. Then, the expression patterns of ANXA2 and its pseudogenes were validated in diffuse glioma specimens (n=99) and non-tumor tissues (n=12) by quantitative real-time PCR (qRT-PCR). Additionally, Kaplan-Meier analysis revealed that highly expressed ANXA2 and annexin A2 pseudogenes were associated with the poor survival outcome of glioma patients. Cox regression analyses suggested that ANXA2, ANXA2P1 and ANXA2P2 were the independent prognosis factors for gliomas. Furthermore, down-regulation of ANXA2 and ANXA2 pseudogenes might contribute to the improvement of patients' survival who received chemotherapy and radiotherapy. These results demonstrated that ANXA2 pseudogenes and ANXA2 could be used as the novel biomarkers for diagnosis, prognosis and target therapy of gliomas.

SELECTION OF CITATIONS
SEARCH DETAIL
...