Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Microb Cell Fact ; 23(1): 33, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267983

ABSTRACT

Growing evidence has demonstrated that cold and humid environmental stress triggers gastrointestinal (GI) disorders. In this study, we explored the effects of intestinal microbiota homeostasis on the intestinal mucus barrier and GI disorders by cold and humid environmental stress. Moreover, the inner link between the intestinal mucosal microbiota and metabolites in mice with cold and humid environmental stress was interpreted by integrative analysis of PacBio HiFi sequencing microbial genomics and targeted metabolomics. In the current study, we found (1) after the cold and wet cold and humid environmental stress intervened in the intestinal microbiota disorder and homeostasis mice respectively, the bacterial culturing and fluorescein diacetate (FDA) microbial activity detection of intestinal microbiota including feces, intestinal contents, and intestinal mucosa suggested that the cold and humid environmental stress decreased the colony of culturable bacteria and microbial activity, in which intestinal microbiota disorder aggravated the injury of the intestinal mucus barrier and the GI symptoms related to cold and humid environmental stress; (2) the serum amino acid transferases such as glutamate pyruvic transa (GPT), and glutamic oxaloacetic transaminase (GOT) in cold and humid environmental stressed mice increased significantly, indicating that the intestinal microbiota adapted to cold and humid environmental stress by regulating the host's amino acid metabolism; (3) the integrative analysis of multi-omics illustrated a prediction model based on the microbiota Lactobacillus reuteri abundance and host amino acid level that can predict intestinal mucoprotein Muc2 with an adjusted R2 of 75.0%. In conclusion, the cold and humid environmental stress regulates the neurotransmitter amino acids metabolic function both in intestinal mucosal microbiota and host serum by adjusting the composition of the dominant bacterial population Lactobacillus reuteri, which contributes to the intestinal mucus barrier injury and GI disorders caused by cold and humid environmental stress.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Mice , Intestinal Mucosa , Homeostasis , Amino Acids
2.
SLAS Technol ; 29(1): 100101, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37541541

ABSTRACT

BACKGROUND: Skin cutaneous melanoma (SKCM) is one of the fastest developing malignancies with strong aggressive ability and no proper curative treatments. Numerous studies illustrated the importance of N6-methyladenosine (m6A) RNA modification to tumorigenesis. The aim of this study was to identify novel prognostic signature by using m6A-related lncRNAs, thus to improve the survival for SKCM patients and guide SKCM therapy. METHODS: We downloaded the Presentational Matrix data from The Cancer Genome Atlas (TCGA) and analyzed all the expressed lncRNAs among 468 SKCM samples. Pearson correlation analysis was performed to assess the correlations between lncRNAs and 29 m6A-related genes. Least absolute shrinkage and selection operator (LASSO), univariate and multivariate Cox regression analysis were performed to construct m6A-related lncRNAs prognostic signature (m6A-LPS). The accuracy and prognostic value of this signature were validated by using receiver operating characteristic (ROC) curves, Kaplan-Meier (K-M) survival analysis, univariate COX or multivariate COX analyses. After calculating risk scores, patients were divided into low- and high-risk subgroups by the median value of risk scores. RESULTS: A total of 2973 lncRNAs were found expressed among SKCM tissues. Prognostic analysis showed that 98 lncRNAs had a significant effect on the survival of SKCM patients. The m6A-LPS was validated using K-M and ROC analysis and the predictive accuracy of the risk score was also high according to the AUC of the ROC curve in training and testing sets. A nomogram based on tumor stage, gender and risk score that had a strong ability to forecast the 1-, 2-, 3-, 5-year OS of SKCM patients confirmed by calibrations. Enrichment analysis indicated that malignancy-associated biological processes and pathways were more common in the high-risk subgroup. CONCLUSION: Collectively, m6A-related lncRNAs exert as potential biomarkers for prognostic stratification of SKCM patients and may assist clinicians achieving individualized treatment for SKCM.


Subject(s)
Adenine/analogs & derivatives , Melanoma , RNA, Long Noncoding , Skin Neoplasms , Humans , Melanoma/diagnosis , Melanoma/genetics , Skin Neoplasms/diagnosis , Skin Neoplasms/genetics , RNA, Long Noncoding/genetics , Lipopolysaccharides , Prognosis
3.
Mol Neurobiol ; 60(9): 4897-4908, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37191854

ABSTRACT

Myelin, a lipid-enriched multi-layer membrane structure, allows for rapid long-distance saltatory conduction of neuronal impulses. Although glycolipids are the predominant types of lipids in the myelin bilayer, the role of glycolipid transfer protein (GLTP), which selectively mediates the transfer of various glycolipids between phospholipid bilayer, in myelin development and maintenance remains unknown at present. In this study, we identified Gltp as the key lipid metabolism gene in myelin-forming oligodendrocytes (OLs) through integrated omics analysis across independent transcriptomic and single-cell sequencing studies. Gene expression analysis revealed that Gltp is selectively expressed in the differentiated OLs. Functional study demonstrated that its expression is essential for the differentiation of OLs, and promotes the outgrowth of OL membrane. Moreover, we found that the expression of Gltp is regulated by OL-lineage transcriptional factors, such as NKX2.2, OLIG2, SOX10, and MYRF. These findings provide important insights into the unrecognized functions of Gltp in OL differentiation and maturation.


Subject(s)
Glycolipids , Oligodendroglia , Oligodendroglia/metabolism , Myelin Sheath/metabolism , Transcription Factors , Cell Differentiation/physiology
4.
Cells ; 12(6)2023 03 08.
Article in English | MEDLINE | ID: mdl-36980172

ABSTRACT

Mounting evidence suggests that circular RNAs play important roles in the development and progression of cancers. However, their function in glioblastomas (GBM) is still unclear. By circRNA array analysis, we found that circXPO1 (hsa_circ_102737) was significantly upregulated in GBM, and qPCR analysis verified that the circXPO1 expression level was increased in both GBM tissues and cell lines. Functional studies demonstrated that the knockdown of circXPO1 in GBM cell lines repressed cell proliferation and migration; conversely, the overexpression of circXPO1 promoted the malignancy of GBM cells. In line with these findings, circXPO1 inhibition effectively suppressed gliomagenesis in the in situ transplantation model of nude mice. Through bioinformatic analyses and dual-luciferase reporter assays, we showed that circXPO1 directly bound to miR-7-5p, which acted as a tumor suppressor through the negative regulation of RAF1. In conclusion, our studies suggest that the circXPO1/miR-7-5p/RAF1 axis promotes brain tumor formation and may be a potential therapeutic target for GBM treatment.


Subject(s)
Brain Neoplasms , Glioblastoma , MicroRNAs , Animals , Mice , Brain Neoplasms/metabolism , Glioblastoma/metabolism , Mice, Nude , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Humans
5.
Front Microbiol ; 14: 1123843, 2023.
Article in English | MEDLINE | ID: mdl-36925479

ABSTRACT

Inflammation and immunity play a major role in the development of hypertension, and a potential correlation between host mucosal immunity and inflammatory response regulation. We explored the changes of intestinal mucosal microbiota in hypertensive rats induced by high-salt diet and the potential link between the intestinal mucosal microbiota and inflammation in rats. Therefore, we used PacBio (Pacific Bioscience) SMRT sequencing technology to determine the structure of intestinal mucosal microbiota, used enzyme-linked immunosorbent assay (ELISA) to determined the proinflammatory cytokines and hormones associated with hypertension in serum, and used histopathology methods to observe the kidney and vascular structure. We performed a potential association analysis between intestinal mucosal characteristic bacteria and significantly different blood cytokines in hypertensive rats induced by high-salt. The results showed that the kidney and vascular structures of hypertensive rats induced by high salt were damaged, the serum concentration of necrosis factor-α (TNF-α), angiotensin II (AngII), interleukin-6 (IL-6), and interleukin-8 (IL-8) were significantly increased (p < 0.05), and the coefficient of immune organ spleen was significantly changed (p < 0.05), but there was no significant change in serum lipids (p > 0.05). From the perspective of gut microbiota, high-salt diet leads to significant changes in intestinal mucosal microbiota. Bifidobacterium animalis subsp. and Brachybacterium paraconglomeratum were the dominant differential bacteria in intestinal mucosal, with the AUC (area under curve) value of Bifidobacterium animalis subsp. and Brachybacterium paraconglomeratum were 1 and 0.875 according to ROC (receiver operating characteristic) analysis. Correlation analysis showed that Bifidobacterium animalis subsp. was correlated with IL-6, IL-8, TNF-α, and Ang II. Based on our results, we can speculated that high salt diet mediated chronic low-grade inflammation through inhibited the growth of Bifidobacterium animalis subsp. in intestinal mucosa and caused end-organ damage, which leads to hypertension.

6.
Anim Biotechnol ; 34(4): 1040-1049, 2023 Nov.
Article in English | MEDLINE | ID: mdl-34874229

ABSTRACT

Intestinal microbiota not only participates in the digestion and absorption of nutrients, but also plays an important role in regulating host metabolism and health. The current study aimed to explore the intestinal microbiota characteristics in pigs infected with African swine fever. Below the same term, fresh fecal samples of sick and healthy pigs were collected. Primers were designed and PCR was extracted based on the 16S rDNA gene of bacteria by Illumina NovaSeq sequencing platform. The results showed that the bacterial alpha diversity index of healthy pigs was significantly higher than that of sick pigs (p < 0.05). On the phylum taxa, dominant bacteria more than 98.5% in the two groups are composed of Firmicutes, Spirobacteria, and Bacteroides, of which the abundance of Firmicutes and Bacteroidetes decreased and Spiricobacteria increased extremely significant in sick pigs (p < 0.01). On the genus taxa, the relative abundance of Oscillospira, Streptococcus and Roseburia decreased significantly (p < 0.05). Most notably, Treponema performed excellently in distinguishing pigs infected with African swine fever with the abundance increased extremely significantly (p < 0.01). In conclusion, African swine fever could alter the abundance of dominant bacteria in pigs, and Treponema may be one of the important inducers for swine pathogenicity. HighlightsThe bacterial population composition in sick pigs and healthy pigs was basically similar, but the relative abundance of dominant bacteria was significantly difference.ASF could alter the abundance of dominant bacteria in pigs, and Treponema may be one of the important inducers for swine pathogenicity.These results will provide further evidence for the ASF infection in local pig farms and provide reference for their microecological control, which has important practical significance and social value for effective control of ASF, stability of pig production and guarantee of market supply.


Subject(s)
African Swine Fever , Gastrointestinal Microbiome , Swine Diseases , Swine , Animals , African Swine Fever/epidemiology , Bacteria/genetics , Feces , Farms
7.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-981435

ABSTRACT

The aim of this study is to explore the mechanism of ligustilide, the main active constituent of essential oils of traditional Chinese medicine Angelicae Sinensis Radix, on alleviating oxygen-glucose deprivation/reperfusion(OGD/R) injury in PC12 cells from the perspective of ferroptosis. OGD/R was induced in vitro, and 12 h after ligustilide addition during reperfusion, cell viability was detected by cell counting kit-8(CCK-8) assay. DCFH-DA staining was used to detect the level of intracellular reactive oxygen species(ROS). Western blot was employed to detect the expression of ferroptosis-related proteins, glutathione peroxidase 4(GPX4), transferrin receptor 1(TFR1), and solute carrier family 7 member 11(SLC7A11), and ferritinophagy-related proteins, nuclear receptor coactivator 4(NCOA4), ferritin heavy chain 1(FTH1), and microtubule-associated protein 1 light chain 3(LC3). The fluorescence intensity of LC3 protein was analyzed by immunofluorescence staining. The content of glutathione(GSH), malondialdehyde(MDA), and Fe was detected by chemiluminescent immunoassay. The effect of ligustilide on ferroptosis was observed by overexpression of NCOA4 gene. The results showed that ligustilide increased the viability of PC12 cells damaged by OGD/R, inhibited the release of ROS, reduced the content of Fe and MDA and the expression of TFR1, NCOA4, and LC3, and improved the content of GSH and the expression of GPX4, SLC7A11, and FTH1 compared with OGD/R group. After overexpression of the key protein NCOA4 in ferritinophagy, the inhibitory effect of ligustilide on ferroptosis was partially reversed, indicating that ligustilide may alleviate OGD/R injury of PC12 cells by blocking ferritinophagy and then inhibiting ferroptosis. The mechanism by which ligustilide reduced OGD/R injury in PC12 cells is that it suppressed the ferroptosis involved in ferritinophagy.


Subject(s)
Animals , Rats , PC12 Cells , Ferroptosis/genetics , Reactive Oxygen Species , Transcription Factors , Glutathione
8.
Chinese Journal of Pathology ; (12): 480-485, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-985704

ABSTRACT

Objective: To investigate the pathological changes of placenta in pregnant women with aortic dissection/aneurysm and their relationship with clinical features. Methods: The placental samples of 14 pregnant women with aortic dissection/aneurysm diagnosed from January 2012 to October 2021 and 10 normal placental samples of pregnant women from January 2021 to December 2021 at Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China were selected. Routine H&E staining and immunohistochemistry were used to analyze the histological features under light microscope. The clinical data were also analyzed. Results: The age of 14 pregnant patients with aortic dissection/aneurysm for placental examination ranged from 22 to 38 years (median, 28 years). The gestational ages ranged from 22 to 39 weeks (median, 34 weeks). The pregnancy of second trimester was noted in 2 cases, and the third trimester in 12 cases. All cases were singleton pregnancy. Seven cases were Stanford type A aortic dissection, 6 cases were Stanford type B aortic dissection, and one case was aortic root aneurysm. Four of the pregnant women underwent aortic dissection surgery after caesarean section, three underwent caesarean section after aortic dissection surgery, and seven underwent both caesarean section and aortic dissection procedures. Among the newborns, 2 cases were full-term birth, and 12 cases were premature birth. Twelve cases had alive newborns, and 2 cases stillbirths. Fetal/placental weight ratio (FPR)<10th percentile was in 5 cases and FPR>90th percentile in one case. Compared with the normal group, accelerated villus maturation and distal villus dysplasia were more frequently found in pregnancy with aortic dissection group (P<0.05). There was no significant difference in villi infarction and decidua vascular lesions between the two groups (P>0.05), nor was there correlation between the type of aortic dissection and distal villus dysplasia and accelerated villus maturation of placentas (P>0.05). The number of villous interstitial blood vessels in the placentas of pregnancy with aortic dissection group was significantly fewer than that in the normal control group (P<0.01). Conclusions: There are considerable pathological changes in the placentas of pregnant women with aortic dissection/aneurysm. The main histological features are accelerated villus maturation and distal villus dysplasia, which are manifestations of villous ischemia and hypoxia, and also a part of the placental pathological manifestations of maternal vascular dysperfusion.


Subject(s)
Pregnancy , Female , Infant, Newborn , Humans , Infant , Young Adult , Adult , Placenta/pathology , Cesarean Section , Aortic Dissection/surgery , Gestational Age , Aortic Aneurysm/pathology
9.
Biomed Res Int ; 2022: 5603451, 2022.
Article in English | MEDLINE | ID: mdl-35978648

ABSTRACT

The changes of intestinal microbiota are closely related to the growth and development of animals. The current study is aimed at exploring the composition of the microbial community of pigs at different growth stages. Fresh fecal samples of three-breed hybrid pigs at three developmental stages (60, 120, and 180 days of age) were collected. The microbial composition was analyzed based on the 16S rDNA gene of bacteria Illumina NovaSeq sequencing platform. The results showed that the intestinal microbiota of pigs was distributed in 22 phyla, 46 classes, 84 orders, 147 families, and 287 genera. Firmicutes, Bacteroides, Spirochaetae, Proteobacteria, and Actinobacteria were the dominant phyla. Lactobacillus, Streptococcus, SMB53, Oscillospira, and Prevotella were the dominant genera. Among them, the abundance of Lactobacillus and SMB53 increased first and then decreased, while the change of Oscillospira was opposite. In addition, the abundance of Streptococcus increased while that of Prevotella decreased gradually. Moreover, with the increase of time and body weight, the microbial diversity showed a decreasing trend. In conclusion, the intestinal microbial composition of the three-breed hybrid pigs was relatively stable during the fattening stage, but there were significant differences in abundance.


Subject(s)
Gastrointestinal Microbiome , Animals , Bacteria/genetics , Firmicutes/genetics , Gastrointestinal Microbiome/genetics , Lactobacillus/genetics , Plant Breeding , RNA, Ribosomal, 16S/genetics , Streptococcus , Swine
10.
Front Nutr ; 9: 964273, 2022.
Article in English | MEDLINE | ID: mdl-36017217

ABSTRACT

The gut microbiota and metabolites are closely related to hypertension; however, the changes in the composition of the gut microbiome and metabolites linking a high salt diet to elevated blood pressure are not established. In this study, traditional Chinese medicine (TCM) syndrome of hypertension caused by high salt had been diagnosed and the pathogenesis of hypertension was explored from the perspective of intestinal microecology. Rats in a high salt diet-induced hypertension group (CG) and normal group (CZ) were compared by 16S rRNA gene full-length sequencing and liquid chromatography and mass spectrometry to identify differences in the bacterial community structure, metabolites, and metabolic pathways. Hypertension induced by a high salt diet belongs to liver-Yang hyperactivity syndrome. Alpha and beta diversity as well as the composition of microbiota from the phylum to species levels differed substantially between the CG and CZ groups. In an analysis of differential metabolites in the intestines, a high salt diet mainly affected the metabolism of amino acids and their derivatives; in particular, γ-aminobutyric acid (GABA) was down-regulated and glutamic acid and its derivatives were up-regulated under a high salt diet. Based on a KEGG analysis, high salt intake mainly altered pathways related to GABA and the glutamate/glutamine metabolism, such as the GABAergic synapse pathway and glutamatergic synapse pathway. The correlation analysis of differential gut microbes and differential metabolites suggested that a high salt diet promoted hypertension via the inhibition of Clostridiaceae_1 growth and alterations in the GABA metabolic pathway, leading to increased blood pressure. These findings suggest that a high salt diet induces hypertension of liver-Yang hyperactivity syndrome by mediating the microbiota associated with the glutamate/GABA-glutamine metabolic cycle via the gut-brain axis.

11.
Comput Intell Neurosci ; 2022: 2320447, 2022.
Article in English | MEDLINE | ID: mdl-35479605

ABSTRACT

As the typical application of computational intelligence in software engineering, cross-project defect prediction (CPDP) uses labeled data from other projects (source projects) for building models to predict the defects in the current projects (target projects), helping testers quickly locate the defective modules. But class imbalance and different data distribution among projects make CPDP a challenging topic. To address the above two problems, we propose a two-phase feature importance amplification (TFIA) CPDP model in this paper which can solve these two problems from domain adaptation phase and classification phase. In the domain adaptation phase, the differences in data distribution among projects are reduced by filtering both source and target projects, and the correlation-based feature selection with greedy best-first search amplifies the importance of features with strong feature-class correlation. In the classification phase, Random Forest works as the classifier to further amplify the importance of highly correlated features and establish a model which is sensitive to highly correlated features. We conducted both ablation experiments and comparison experiments on the widely used AEEEM database. Experimental results show that TFIA can yield significant improvement on CPDP. And the performance of TFIA CPDP model in all experiments is stable and efficient, which lays a solid foundation for its further application in practical engineering.


Subject(s)
Artificial Intelligence , Software , Databases, Factual
12.
Curr Med Sci ; 42(2): 387-396, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35419676

ABSTRACT

OBJECTIVE: Pituitary adrenocorticotropic hormone (ACTH)-secreting adenoma is a relatively intractable endocrine adenoma that can cause a range of severe metabolic disorders and pathological changes involving multiple systems. Previous studies have shown that celastrol has antitumor effects on a variety of tumor cells via the AKT/mTOR signaling. However, whether celastrol has pronounced antitumor effects on pituitary ACTH-secreting adenoma is unclear. This study aimed to identify a new effective therapeutic drug for pituitary ACTH-secreting adenoma. METHODS: Mouse pituitary ACTH-secreting adenoma cells (AtT20 cells) were used as an experimental model in vitro and to establish a xenograft tumor model in mice. Cells and animals were administered doses of celastrol at various levels. The effects of celastrol on cell viability, migration, apoptosis and autophagy were then examined. Finally, the potential involvement of AKT/mTOR signaling in celastrol's mechanism was assessed. RESULTS: Celastrol inhibited the proliferation and migration of pituitary adenoma cells in a time- and concentration-dependent manner. It blocked AtT20 cells in the G0/G1 phase, and induced apoptosis and autophagy by downregulating the AKT/mTOR signaling pathway. Similar results were obtained in mice. CONCLUSION: Celastrol exerts potent antitumor effects on ACTH-secreting adenoma by downregulating the AKT/mTOR signaling in vitro and in vivo.


Subject(s)
Adenoma , Pituitary Neoplasms , Adenoma/drug therapy , Adenoma/metabolism , Adenoma/pathology , Adrenocorticotropic Hormone/metabolism , Adrenocorticotropic Hormone/pharmacology , Adrenocorticotropic Hormone/therapeutic use , Animals , Apoptosis , Autophagy , Humans , Mice , Pentacyclic Triterpenes , Pituitary Neoplasms/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/pharmacology , TOR Serine-Threonine Kinases/therapeutic use
13.
J Genet Genomics ; 49(2): 132-144, 2022 02.
Article in English | MEDLINE | ID: mdl-34530169

ABSTRACT

Glioma is the most common type of tumor in the central nervous system, accounting for around 80% of all malignant brain tumors. Previous studies showed a significant association between nuclear morphology and the malignant progress of gliomas. By virtue of integrated proteomics and genomics analyses as well as experimental validations, we identify three nuclear lamin genes (LMNA, LMNB1, and LMNB2) that are significantly upregulated in glioma tissues compared with normal brain tissues. We show that elevated expressions of LMNB1, LMNB2, and LMNA in glioma cells are highly associated with the rapid progression of the disease and the knockdown of LMNB1, LMNB2, and LMNA dramatically suppresses glioma progression in both in vitro and in vivo mouse models. Moreover, the repression of glioma cell growth by lamin knockdown is mediated by the pRb-mediated G1-S inhibition. On the contrary, overexpression of lamins in normal human astrocytes dramatically induced nuclear morphological aberrations and accelerated cell growth. Together, our multi-omics-based analysis has revealed a previously unrecognized role of lamin genes in gliomagenesis, providing a strong support for the key link between aberrant tumor nuclear shape and the survival of glioma patients. Based on these findings, lamins are proposed to be potential oncogene targets for therapeutic treatments of brain tumors.


Subject(s)
Brain Neoplasms , Glioma , Animals , Brain Neoplasms/genetics , Genomics , Glioma/genetics , Humans , Mice , Nuclear Lamina/genetics , Nuclear Lamina/metabolism , Oncogenes
14.
Water Res ; 206: 117731, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34626885

ABSTRACT

Biogenic ferrous sulfide nanoparticles (bio-FeS) as low-cost and green-synthesized nanomaterial are promising for heavy metals removal, but the need for complicated extraction, storage processes and the production of iron sludge still restrict their practical application. Here, a self-regenerable bio-hybrid consisting of bacterial cells and self-assembled bio-FeS was developed to efficiently remove chromium (Cr(VI)). A dense layer of bio-FeS was distributed on the cell surface and in the periplasmic space of Shewanella oneidensis MR-1, endowing the bacterium with good Cr(VI) tolerance and unusual activity for bio-FeS-mediated Cr(VI) reduction. An artificial transmembrane electron channel was constituted by the bio-FeS to facilitate extracellular electron pumping, enabling efficient regeneration of extracellular bio-FeS for continuous Cr(VI) reduction. The bio-hybrid maintained high activity within three consecutive treatment-regeneration cycles for treating both simulated Cr(VI)-containing wastewater (50 mg/L) and real electroplating wastewater. Importantly, its activity can be facilely and fully restored through bio-FeS re-synthesis or regeneration with replenished fresh bacteria. Overall, the bio-hybrid merges the self-regeneration ability of bacteria with high activity of bio-FeS , opening a promising new avenue for sustainable treatment of heavy metal- containing wastewater.


Subject(s)
Chromium , Nanoparticles , Chromium/analysis , Ferrous Compounds , Shewanella , Wastewater
15.
Front Microbiol ; 12: 626691, 2021.
Article in English | MEDLINE | ID: mdl-33708183

ABSTRACT

Repeated stress-related diarrhea is a kind of functional bowel disorders (FBDs) that are mainly stemming from dysregulation of the microbiota-gut-brain axis mediated by a complex interplay of 5-hydroxytryptophan (5-HT). Intestinal content and intestinal mucosa microbiota belong to two different community systems, and the role of the two microbiota community systems in repeated stress-related diarrhea remains largely unknown. In order to ascertain the difference in composition and the potential function between intestinal content and intestinal mucosa microbiota response on repeated stress-related diarrhea, we collected intestinal contents and mucosa of mice with repeated stress-related diarrhea for 16S rRNA PacBio SMRT gene full-length sequencing, and with the digital modeling method of bacterial species abundance, the correlations among the two microbiota community systems and serum 5-HT concentration were analyzed. We found that the microbiotal composition differences both in intestinal contents and mucosa were consistent throughout all the phylogenetic ranks, with an increasing level of resolution. Compared with intestinal content microbiota, the diversity and composition of microbiota colonized in intestinal mucosa are more sensitive to repeated stress-related diarrhea. The PICRUSt2 of metagenomic function analysis found that repeated stress-related diarrhea is more likely to perturb the intestinal mucosa microbiota metagenomic functions involved in the neural response. We further found that the mucosal microbiota-based relative abundance model was more predictive on serum 5-HT concentration with the methods of machine-learning model established and multivariate dimensionality reduction (R 2 = 0.876). These findings suggest that the intestinal mucosa microbiota might serve as a novel potential prediction model for the serum 5-HT concentration involvement in the repeated stress-related diarrhea, in addition to focusing on its mechanism in the gastrointestinal dysfunction.

16.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 51(6): 859-865, 2020 Nov.
Article in Chinese | MEDLINE | ID: mdl-33236613

ABSTRACT

OBJECTIVE: To observe the postoperative outcomes of the scleral fixation of posterior chamber intraocular lens (SF-PCIOL) using the modified Yamane's technique with the aid of swept-source optical coherence tomography (SS-OCT). METHODS: Prospective observational case series. This study involved 20 patients who underwent SF-PCIOL with the modified Yamane's technique, from December 2017 to November 2019. All patients had routine preoperative examinations, including biometric measurement by IOL master, measurements of uncorrected distance visual acuity (UDVA) and best corrected distance visual acuity (BCDVA). The SRK/T formula was used to calculate the power of intraocular lens (IOL). After the surgery, UDVA and intraocular pressure were evaluated for 1 d, UDVA, BCDVA, spherical equivalent (SE) and corneal endothelial cell density were measured for 1 week, 1 month, 3 and 6 months, respectively. The IOL tilt and the symmetry of hepatitis in the scleral tunnel were measured by SS-OCT. RESULTS: The mean follow-up duration was (7.20±6.56) months (range, 3-26 months). The mean preoperative UDVA was (1.70±0.38) LogMAR, and it improved to (0.48±0.50) LogMAR ( P=0.001). There was no statistically significant difference between the pre- and post-operative BCDVA, i.e. (0.44±0.50) LogMAR and (0.32±0.48) LogMAR, respectively ( P=0.08). The mean spherical equivalent was (-0.53±0.86) diopter (D) and the postoperative refractive error was (0.27±0.82) D. Seventeen patients underwent SS-OCT examinations. The mean IOL tilt was (3.28±3.00)°. There was no significant difference between the horizontal and vertical tilt ( P=0.326). The IOL tilt did not show a significant correlation with spherical and cylindrical refractive error ( P=0.532, P=0.241). There was no statistically significant difference in the HL (the length of haptics fixed in the scleral tunnel) of nasal and temporal haptic, which were (2.24±0.20) mm and (2.17±0.23) mm, respectively ( P=0.193). And there were no statistically significant differences between the HD (the distance between the center of haptic flange and scleral spur) of nasal and temporal haptic, (1.58±0.07) mm and (1.66±0.08) mm, respectively ( P=0.338). The changes of IOL haptics in the scleral tunnel were tracked by 10 patients. The HL (nasal: HL-N; temporal: HL-T) and the HD (nasal: HD-N; temporal: HD-T) of haptics in the tunnel were measured and recorded at three time points, including 1 week, 1 and 3 months after surgery. There was no significant difference in HL-N, HL-T, HD-N and HD-T at the three time points ( P=0.931, P=0.091, P=0.175, and P=0.505, respectively). All patients underwent uneventful surgery. The postoperative complications included transient corneal edema in 6 eyes, transient IOP elevation in 3 eyes, vitreous hemorrhage in 1 eye, cystoid macular edema in 2 eyes, and macular hole in 1 eye. CONCLUSION: The SF-PCIOL using modified Yamane's technique, is capable of producing satisfactory and consistent postoperative outcomes for patients with few postoperative complications. SS-OCT is a powerful tool for measuring optic tilt and the IOL hepatic symmetry in scleral tunnel.


Subject(s)
Lenses, Intraocular , Sclera , Humans , Lens Implantation, Intraocular , Prospective Studies , Retrospective Studies , Sclera/diagnostic imaging , Sclera/surgery , Tomography, Optical Coherence
17.
Gastroenterol Res Pract ; 2020: 9420129, 2020.
Article in English | MEDLINE | ID: mdl-32256567

ABSTRACT

The current research tried to explore the effect of Qiweibaizhu powder (QWBZP) on the bacterial diversity and community structure of the intestinal mucosa of dysbiosis diarrhea mice and provide a scientific basis for the efficacy of QWBZP on antibiotic-induced diarrhea. A dysbiosis diarrhea mouse model was constructed with broad-spectrum antibiotics through a mixture of cephradine capsules and gentamicin sulfate (23.33 mL·kg-1·d-1). Intestinal mucosa was collected, and DNA was extracted from each group. The bacterial characteristics in intestinal mucosa were analyzed by MiSeq sequencing based on the 16S rRNA sequencing platform. There were no significant differences in alpha diversity indices among the three groups. The sample distributions in both the normal and QWBZP groups were relatively concentrated, and the distance among individuals was close. However, an opposite result was obtained in the model group. Furthermore, the composition and abundance of species were similar between the normal group and the QWBZP group at both the phylum and genus levels. After treatment with QWBZP, the abundance of Lactobacillus increased, and Proteobacteria decreased, and the Firmicutes/Bacteroidetes ratio decreased to a normal level. Our results indicate that QWBZP can help repair mucosal bacterial structure and recover mucosal microbiota. Specifically, QWBZP increased the abundance of Lactobacillus and Bacteroidales S24-7 group norank.

18.
Med Sci Monit ; 26: e920879, 2020 Jan 27.
Article in English | MEDLINE | ID: mdl-31986127

ABSTRACT

BACKGROUND Debaryomyces hansenii exhibits a therapeutic effect on antibiotic-associated diarrhea (AAD) by promoting the growth of beneficial intestinal bacteria. Previous research has reported that AAD involves not only dysbacteriosis but also dysfunction of the activity of intestinal enzymes (such as lactase). Enzyme activities can be influenced by many other factors, such as gene expression. The present study showed that D. hansenii has a curative effect on AAD at the lactase gene level. MATERIAL AND METHODS The effect of D. hansenii on the lactase gene from intestinal bacteria in AAD mice was investigated. The diarrhea model was established with a gentamycin sulfate and cefradine capsule mixture. The antibiotic mixture (23.33 mL·kg⁻¹·day⁻¹) was intragastrically administered for 5 days. Subsequently, half of the diarrhea mice were treated with D. hansenii twice a day for 3 days while the other mice were intragastrically administered with the same volume of distilled water. Next, the intestinal contents were collected, and metagenomic DNA was extracted for high-throughput sequencing analysis. RESULTS The Chao1 and Shannon indices decreased significantly following treatment with D. hansenii (P<0.01 and P<0.05, respectively). Moreover, the clusters in the D. hansenii group mice were quite different from those in the normal group mice and model group mice. Following treatment with D. hansenii, the quantity of lactase genes in Enterobacter sp. 638 and Modestobacter increased markedly, and the richness of intestinal bacterial lactase genes in Fretibacterium recovered. CONCLUSIONS D. hansenii altered the lactase-producing bacterial community structure and promoted the growth of several critical lactase-producing bacteria, such as Enterobacter sp. 638 and Modestobacter.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Bacteria/genetics , Biodiversity , Diarrhea/drug therapy , Diarrhea/microbiology , Genes, Bacterial , Intestines/microbiology , Lactase/genetics , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Base Sequence , Female , Male , Mice
19.
Aging (Albany NY) ; 12(2): 1624-1642, 2020 01 27.
Article in English | MEDLINE | ID: mdl-31986488

ABSTRACT

D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS1000) is the most active water-soluble derivative of vitamin E and has been widely used as a carrier of solvents, plasticizers, emulsifiers, absorbent agents and refractory drug delivery systems. However, its anti-hepatocellular carcinoma (HCC) properties have not been explored. HCC cells were treated with different concentrations of TPGS1000. Cell survival was tested by CCK8 assay, and cell migration was tested by wound healing and Transwell assay. EdU staining verified cell proliferation, and signalling pathway was assayed by Western blot analysis. The BALB/c-nu mouse xenograft model was established to test HCC cell growth in vivo. In vitro TPGS1000 significantly inhibited the viability and mobility of HCC cells (HepG2, Hep3B and Huh7) in a dose-dependent manner. Cell cycle analysis indicated that TPGS1000 treatment arrested the HCC cell cycle in the G0/G1 phase, and induction of cell apoptosis was confirmed by TUNEL and Annexin V-7-AAD staining. Further pharmacological analysis indicated that collapse of the transmembrane potential of mitochondria, increased ROS generation, PARP-induced cell apoptosis and FoxM1-p21-mediated cell cycle arresting, were involved in the anti-HCC activity of TPGS1000. Moreover, treatment in vivo with TPGS1000 effectively impaired the growth of HCC xenografts in nude mice.


Subject(s)
Antineoplastic Agents/pharmacology , Vitamin E/analogs & derivatives , Vitamin E/pharmacology , Animals , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Movement , Cell Proliferation/drug effects , Cell Survival/drug effects , DNA Replication , Disease Models, Animal , Forkhead Box Protein M1/metabolism , Humans , Membrane Potential, Mitochondrial/drug effects , Mice , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
20.
Bioresour Technol ; 297: 122448, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31771810

ABSTRACT

In this work, a single microbial electrochemical system was developed for multiple goals simultaneously - CO2 reduction, biogas purification, upgrading and sulfur recovery. This system consists of a methanogen-inoculated biocathode for CO2 reduction and a ferrous ion (Fe2+)-mediated abiotic anode for hydrogen sulfide (H2S) oxidation. In the cathodic chamber, methane production rate of 20.6 ± 1.0 µmol·h-1 and high upgrading level (up to 98.3% methane content) were achieved. In the anodic chamber, H2S was completely removed and selectively converted into elemental sulfur particles. The system showed stable performance during continuous operation for treating both pure CO2 and mixed gases, with a cathodic coulombic efficiency of up to 85.2%. This simple system holds a great potential for practical application for biogas upgrading and sulfur recovery from waste water/gases.


Subject(s)
Biofuels , Carbon Dioxide , Methane , Sulfur , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...