Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
Article in English | WPRIM (Western Pacific) | ID: wpr-771095

ABSTRACT

@#Introduction: Post-implantation rod deformation is anticipated in scoliosis surgery but the difference in rod deformation between titanium and cobalt chrome rod has not been elucidated. This study aims to compare the difference in rod deformation between two groups. Materials and Methods: Twenty-one adolescent idiopathic scoliosis (AIS) patients were recruited from a single center. The over-contoured concave rods were traced prior to insertion. Post-operative sagittal rod shape was determined from lateral radiographs. Rod deformation was determined using maximal rod deflection and angle of the tangents to rod end points. The differences between pre- and post-operative rod contour were analysed statistically. Rod deformation and thoracic kyphosis between two types of implants were analysed. Results:Both rods exhibited significant change of rod angle and deflection post-operatively. Curvature of the titanium rod and cobalt chrome rod decreased from 60.5° to 37°, and 51° to 28° respectively. Deflection of titanium rod and cobalt chrome rod reduced from 28mm to 23.5mm and 30mm to 17mm respectively. There was no significant difference between titanium and cobalt chrome groups with regard to rod angle (p=0.173) and deflection (p=0.654). Thoracic kyphosis was increased from 20° to 26° in titanium group but a reduction from 25° to 23° was noticed in cobalt chrome group, but these findings were not statistically significant. Conclusion: There was no statistical difference in rod deformation between the two groups. Thus, the use of titanium rod in correction of sagittal profile is not inferior in outcome compared with cobalt chrome but with lower cost.

3.
Article in English | WPRIM (Western Pacific) | ID: wpr-781170
4.
Article in English | WPRIM (Western Pacific) | ID: wpr-781168
5.
Article in English | WPRIM (Western Pacific) | ID: wpr-781157
8.
Malays Orthop J ; 8(2): 35-9, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25279090

ABSTRACT

ABSTRACT: Taylor's spatial frame (TSF) and Ilizarov external fixators (IEF) are two circular external fixator commonly used to address complex deformity and fractures. There is currently no data available comparing the biomechanical properties of these two external fixators. This study looks into the mechanical characteristics of each system. TSF rings with 6 oblique struts, 4 tube connectors, 4 threaded rods, and 6 threaded rods were compared to a standard IEF rings with 4 threaded rods. Compression and torsional loading was performed to the frame as well as construct with Polyvinylchloride tubes. TSF rings with 4 tube connectors had the highest stiffness (3288 N/mm) while TSF rings with 6 struts was the least stiff. The situation was reversed for torsion where TSF rings with 6 oblique struts had the highest torsional stiffness (82.01 Nm/Degree) and frame Ilizarov rings with 4 threaded rods the least. Standard TSF construct of two ring with 6 oblique struts have better torsional stiffness and lower axial stiffness compared to the standard IEF. KEY WORDS: Taylor's Spatial Frame, Ilizarov External Fixator, Biomechanical properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...