Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 2552: 409-433, 2023.
Article in English | MEDLINE | ID: mdl-36346606

ABSTRACT

In the computational design of antibodies, the interaction analysis between target antigen and antibody is an essential process to obtain feedback for validation and optimization of the design. Kinetic and thermodynamic parameters as well as binding affinity (KD) allow for a more detailed evaluation and understanding of the molecular recognition. In this chapter, we summarize the conventional experimental methods which can calculate KD value (ELISA, FP), analyze a binding activity to actual cells (FCM), and evaluate the kinetic and thermodynamic parameters (ITC, SPR, BLI), including high-throughput analysis and a recently developed experimental technique.


Subject(s)
Antibodies , Antigens , Enzyme-Linked Immunosorbent Assay , Kinetics , Computers
4.
J Biol Chem ; 298(6): 101962, 2022 06.
Article in English | MEDLINE | ID: mdl-35452676

ABSTRACT

Atypical hemolytic uremic syndrome (aHUS) is a disease associated with dysregulation of the immune complement system, especially of the alternative pathway (AP). Complement factor H (CFH), consisting of 20 domains called complement control protein (CCP1-20), downregulates the AP as a cofactor for mediating C3 inactivation by complement factor I. However, anomalies related to CFH are known to cause excessive complement activation and cytotoxicity. In aHUS, mutations and the presence of anti-CFH autoantibodies (AAbs) have been reported as plausible causes of CFH dysfunction, and it is known that CFH-related aHUS carries a high probability of end-stage renal disease. Elucidating the detailed functions of CFH at the molecular level will help to understand aHUS pathogenesis. Herein, we used biophysical data to reveal that a heavy-chain antibody fragment, termed VHH4, recognized CFH with high affinity. Hemolytic assays also indicated that VHH4 disrupted the protective function of CFH on sheep erythrocytes. Furthermore, X-ray crystallography revealed that VHH4 recognized the Leu1181-Leu1189CCP20 loop, a known anti-CFH AAbs epitope. We next analyzed the dynamics of the C-terminal region of CFH and showed that the epitopes recognized by anti-CFH AAbs and VHH4 were the most flexible regions in CCP18-20. Finally, we conducted mutation analyses to elucidate the mechanism of VHH4 recognition of CFH and revealed that VHH4 inserts the Trp1183CCP20 residue of CFH into the pocket formed by the complementary determining region 3 loop. These results suggested that anti-CFH AAbs may adopt a similar molecular mechanism to recognize the flexible loop of Leu1181-Leu1189CCP20, leading to aHUS pathogenesis.


Subject(s)
Antibodies, Monoclonal/chemistry , Atypical Hemolytic Uremic Syndrome , Complement Factor H/chemistry , Atypical Hemolytic Uremic Syndrome/metabolism , Autoantibodies/immunology , Complement Activation , Epitopes , Humans , Mutation
6.
Biochem Biophys Res Commun ; 563: 54-59, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34058475

ABSTRACT

Proteins function through interactions with other molecules. In protein engineering, scientists often engineer proteins by mutating their amino acid sequences on the protein surface to improve various physicochemical properties. "Supercharging" is a method to design proteins by mutating surface residues with charged amino acids. Previous studies demonstrated that supercharging mutations conferred better thermal resistance, solubility, and cell penetration to proteins. Likewise, antibodies recognize antigens through the antigen-binding site on the surface. The genetic and structural diversity of antibodies leads to high specificity and affinity toward antigens, enabling antibodies to be versatile tools in various applications. When assessing therapeutic antibodies, surface charge is an important factor to consider because the isoelectric point plays a role in protein clearance inside the body. In this study, we explored how supercharging mutations affect physicochemical properties of antibodies. Starting from a crystal structure of an antibody with the net charge of -4, we computationally designed a supercharged variant possessing the net charge of +10. The positive-supercharged antibody exhibited marginal improvement in thermal stability, but the secondary structure and the binding affinity to the antigen (net charge of +8) were preserved. We also used physicochemical measurements and molecular dynamics simulations to analyze the effects of supercharging mutations in sodium phosphate buffer with different pH and ion concentrations, which revealed preferential solvation of phosphate ions to the supercharged surface relative to the wild-type surface. These results suggest that supercharging would be a useful approach to preserving thermal stability of antibodies in a wide range of pH, which may enable further diversification of antibody repertoires beyond natural evolution.


Subject(s)
Antibodies/chemistry , Phosphates/chemistry , Temperature , Anions/chemistry , Antibodies/genetics , Hydrogen-Ion Concentration , Molecular Dynamics Simulation , Mutation , Protein Stability , Solubility , Surface Properties
7.
J Biochem ; 170(2): 307-315, 2021 Oct 11.
Article in English | MEDLINE | ID: mdl-33844018

ABSTRACT

There is no standard structural format of the biparatopic bispecific antibody (bbsAb) which is used against the target molecule because of the diversity of biophysical features of bispecific antibodies (bsAbs). It is therefore essential that the interaction between the antibody and antigen is quantitatively analyzed to design antibodies that possess the desired properties. Here, we generated bsAbs, namely, a tandem scFv-Fc, a diabody-Fc, and an immunofusion-scFv-Fc-scFv, that possessed four scFv arms at different positions and were capable of recognizing the extracellular domains of ROBO1. We examined the interactions between these bsAbs and ROBO1 at the biophysical and cellular levels. Of these, immunofusion-B2212A scFv-Fc-B5209B scFv was stably expressed with the highest relative yield. The kinetic and thermodynamic features of the interactions of each bsAb with soluble ROBO1 (sROBO1) were validated using surface plasmon resonance and isothermal titration calorimetry. In all bsAbs, the immunofusion-scFv-Fc-scFv format showed homogeneous interaction with the antigen with higher affinity compared with that of monospecific antibodies. In conclusion, our study presents constructive information to design druggable bbsAbs in drug applications.


Subject(s)
Antibodies, Bispecific/metabolism , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Nerve Tissue Proteins/metabolism , Receptors, Immunologic/metabolism , Single-Chain Antibodies/metabolism , Antibodies, Bispecific/biosynthesis , Antibodies, Bispecific/chemistry , Calorimetry/methods , Carcinoma, Hepatocellular/pathology , Hep G2 Cells , Humans , Kinetics , Liver Neoplasms/pathology , Single-Chain Antibodies/chemistry , Surface Plasmon Resonance/methods , Thermodynamics , Roundabout Proteins
8.
Sci Rep ; 10(1): 17590, 2020 10 16.
Article in English | MEDLINE | ID: mdl-33067496

ABSTRACT

The generation of a wide range of candidate antibodies is important for the successful development of drugs that simultaneously satisfy multiple requirements. To find cooperative mutations and increase the diversity of mutants, an in silico double-point mutation approach, in which 3D models of all possible double-point mutant/antigen complexes are constructed and evaluated using interaction analysis, was developed. Starting from an antibody with very high affinity, four double-point mutants were designed in silico. Two of the double-point mutants exhibited improved affinity or affinity comparable to that of the starting antibody. The successful identification of two active double-point mutants showed that a cooperative mutation could be found by utilizing information regarding the interactions. The individual single-point mutants of the two active double-point mutants showed decreased affinity or no expression. These results suggested that the two active double-point mutants cannot be obtained through the usual approach i.e. a combination of improved single-point mutants. In addition, a triple-point mutant, which combines the distantly located active double-point mutation and an active single-point mutation collaterally obtained in the process of the double-point mutation strategy, was designed. The triple-point mutant showed improved affinity. This finding suggested that the effects of distantly located mutations are independent and additive. The double-point mutation approach using the interaction analysis of 3D structures expands the design repertoire for mutants, and hopefully paves a way for the identification of cooperative multiple-point mutations.


Subject(s)
Thromboplastin/genetics , Thromboplastin/immunology , Antibodies/immunology , Antigens/immunology , Models, Molecular , Mutation/genetics , Point Mutation/genetics , Thermodynamics , Thromboplastin/physiology
9.
ACS Chem Biol ; 13(9): 2783-2793, 2018 09 21.
Article in English | MEDLINE | ID: mdl-30063823

ABSTRACT

DJ-1 is a Parkinson's disease associated protein endowed with enzymatic, redox sensing, regulatory, chaperoning, and neuroprotective activities. Although DJ-1 has been vigorously studied for the past decade and a half, its exact role in the progression of the disease remains uncertain. In addition, little is known about the spatiotemporal regulation of DJ-1, or the biochemical basis explaining its numerous biological functions. Progress has been hampered by the lack of inhibitors with precisely known mechanisms of action. Herein, we have employed biophysical methodologies and X-ray crystallography to identify and to optimize a family of compounds inactivating the critical Cys106 residue of human DJ-1. We demonstrate these compounds are potent inhibitors of various activities of DJ-1 in vitro and in cell-based assays. This study reports a new family of DJ-1 inhibitors with a defined mechanism of action, and contributes toward the understanding of the biological function of DJ-1.


Subject(s)
Parkinson Disease/drug therapy , Protein Deglycase DJ-1/antagonists & inhibitors , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Crystallography, X-Ray , Cysteine/chemistry , Cysteine/metabolism , Drug Discovery , HEK293 Cells , HeLa Cells , Humans , Molecular Docking Simulation , Protein Conformation/drug effects , Protein Deglycase DJ-1/chemistry , Protein Deglycase DJ-1/metabolism
10.
Biochem Biophys Res Commun ; 496(2): 614-620, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29330050

ABSTRACT

OX40 receptor (tumor necrosis factor receptor superfamily, member 4; CD134) is a T-cell co-stimulatory molecule that plays an important role in T-cell activation and survival. OX40 receptor is activated by its ligand, OX40L; and modulation of the OX40-OX40L interaction is a promising target for the treatment of autoimmune diseases and cancers. Here, we generated a high-affinity anti-OX40 single-chain variable fragment carrying a C-terminal cysteine residue (scFvC). Physicochemical and functional analyses revealed that the scFvC bound to OX40-expressing cells and was internalized via OX40-mediated endocytosis without inducing phosphorylation of IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha), an important complex in the classical NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells) signaling pathway. In addition, mutation of the 36th cysteine residue in variable region of light chain enabled site-specific chemical modification to carboxy terminal cysteine and improved the thermal stability of the scFvC. These results suggest that this novel high-affinity anti-OX40 scFvC may be useful as a transporter for targeted delivery of small compounds, proteins, peptides, liposomes, and nanoparticles, into OX40-expressing cells for the treatment of autoimmune diseases and cancers.


Subject(s)
Immunoconjugates/immunology , Receptors, OX40/immunology , Single-Chain Antibodies/immunology , Cell Line , Drug Delivery Systems , Escherichia coli/genetics , Gene Expression , Humans , Immunoconjugates/chemistry , Immunoconjugates/genetics , Jurkat Cells , Models, Molecular , Point Mutation , Protein Stability , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...