Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Sci ; 9(12)2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36548864

ABSTRACT

Due to the high incidence of mammary tumors in dogs, it is important to elucidate the pathogenesis of these tumors in veterinary medicine. Radiation therapy is often used to treat mammary tumors that target DNA lesions. RAD51 is a key molecule that repairs DNA damage via homologous recombination. We examined the relationship between RAD51 expression and radiosensitivity in mammary tumor cell lines. CHMp and CHMm from the same individual were selected based on the differences in RAD51 expression. The radiosensitivity of both cell lines was examined using MTT and scratch assays; CHMm, which has high RAD51 expression, showed higher sensitivity to radiation than CHMp. However, the nuclear focus of RAD51 during DNA repair was formed normally in CHMp, but not in most of CHMm. Since irradiation resulted in the suppression of cell cycle progression in CHMp, the expression of p21, a cell cycle regulatory factor, was detected in CHMp after 15 Gy irradiation but not in CHMm. These results indicate that functional expression is more important than the quantitative expression of RAD51 in canine mammary tumor cells in response to DNA damage.

2.
Viruses ; 14(8)2022 08 06.
Article in English | MEDLINE | ID: mdl-36016355

ABSTRACT

Feline coronaviruses (FCoVs) infect cats worldwide and cause severe systemic diseases, such as feline infectious peritonitis (FIP). FIP has a high mortality rate, and drugs approved by the Food and Drug Administration have been ineffective for the treatment of FIP. Investigating host factors and the functions required for FCoV replication is necessary to develop effective drugs for the treatment of FIP. FCoV utilizes an endosomal trafficking system for cellular entry after binding between the viral spike (S) protein and its receptor. The cellular enzymes that cleave the S protein of FCoV to release the viral genome into the cytosol require an acidic pH optimized in the endosomes by regulating cellular ion concentrations. Ionophore antibiotics are compounds that form complexes with alkali ions to alter the endosomal pH conditions. This study shows that ionophore antibiotics, including valinomycin, salinomycin, and nigericin, inhibit FCoV proliferation in vitro in a dose-dependent manner. These results suggest that ionophore antibiotics should be investigated further as potential broad-spectrum anti-FCoV agents.


Subject(s)
Coronavirus, Feline , Feline Infectious Peritonitis , Animals , Anti-Bacterial Agents/pharmacology , Cats , Cell Proliferation , Coronavirus, Feline/genetics , Feline Infectious Peritonitis/drug therapy , Ionophores/pharmacology
3.
J Biol Chem ; 279(19): 19790-9, 2004 May 07.
Article in English | MEDLINE | ID: mdl-15001573

ABSTRACT

AMP and adenosine are found in all cell types and can be released by cells or created extracellularly from the breakdown of ATP and ADP. We have identified an orphan G protein-coupled receptor with homology to the P2Y family of nucleotide receptors that can respond to both AMP and adenosine. Based on its ability to functionally bind the nucleotide AMP, we have named it P2Y15. Upon stimulation, P2Y15 induces both Ca2+ mobilization and cyclic AMP generation, suggesting coupling to at least two different G proteins. It is highly expressed in mast cells and is found predominantly in the tissues of the respiratory tract and kidneys, which are known to be affected by AMP, adenosine, and adenosine antagonists. Until now, the effects of AMP have been thought to depend on its dephosphorylation to adenosine but we demonstrate here that P2Y15 is a bona fide AMP receptor by showing that it binds [(32)P]AMP. Because AMP and adenosine have bronchoconstrictive effects that can be inhibited by theophylline, we tested whether theophylline and other adenosine receptor antagonists can block P2Y15. We found inhibition at a theophylline concentration well within the therapeutic dose range, indicating that P2Y15 may be a clinically important target of this drug.


Subject(s)
Adenosine Monophosphate/chemistry , Adenosine/chemistry , Calcium/metabolism , Cyclic AMP/metabolism , Receptors, Cell Surface/chemistry , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/physiology , Receptors, Purinergic P2/chemistry , Receptors, Purinergic P2/physiology , Amino Acid Sequence , Animals , Cell Line , Cell Line, Tumor , Cloning, Molecular , Cyclic AMP/chemistry , DNA, Complementary/metabolism , Dose-Response Relationship, Drug , GTP-Binding Proteins/metabolism , Humans , Kinetics , Ligands , Mice , Molecular Sequence Data , Phosphorylation , Phylogeny , Protein Binding , RNA/chemistry , Rats , Receptors, Purinergic P1/chemistry , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid , Signal Transduction , Theophylline/chemistry , Time Factors , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...