Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 59(19): 7478-7486, 2020 05 04.
Article in English | MEDLINE | ID: mdl-32198909

ABSTRACT

A novel 2,6-anthrylene-linked bis(m-terphenylcarboxylic acid) strand (1) self-associates into a racemic double-helix. In the presence of chiral mono- and diamines, either a right- or left-handed double-helix was predominantly induced by chiral amines sandwiched between the carboxylic acid strands with accompanying stacking of the two prochiral anthracene linker units in an enantiotopic face-selective way, as revealed by circular dichroism and NMR spectral analyses. The photoirradiation of the optically active double helices complexed with chiral amines proceeded in a diastereo- (anti or syn) and enantiodifferentiating way to afford the chiral anti-photodimer with up to 98 % enantiomeric excess when (R)-phenylethylamine was used as a chiral double-helix inducer. The resulting optically active anti-photodimer can recognize the chirality of amines and diastereoselectively complex with chiral amines.

2.
Chemistry ; 24(48): 12623-12629, 2018 Aug 27.
Article in English | MEDLINE | ID: mdl-29893493

ABSTRACT

Ordering π-systems into defined supramolecular structures is important for the development of organic functional materials. In recent years, peptides with defined secondary structures and/or self-assembly properties were introduced as powerful tools to order peptide-chromophore conjugates into different morphologies. This work explores whether or not the directionality of peptides can be used to control the self-assembly. The position of the π-system in conjugates between oligoprolines and perylene monoimide (PMI) chromophores was varied by attaching the PMI moiety to the second-to-last residue from the C- and N-termini, respectively. Microscopic and diffraction analysis revealed that the positional isomers form distinctly different supramolecular architectures that extend into the micrometer regime. NMR spectroscopic studies in solution phase allowed correlation of the self-assembly properties with markedly different conformational preferences of the isomeric building blocks. These insights enabled the design of building blocks with predictable self-assembly properties. Thus, the directionality of peptides offers exciting opportunities for controlling the self-assembly and electronic properties of π-systems.


Subject(s)
Nanofibers/chemistry , Peptides/chemistry , Imides/chemistry , Isomerism , Models, Molecular , Perylene/analogs & derivatives , Perylene/chemistry , Protein Conformation , Stereoisomerism
3.
Nat Chem ; 9(11): 1068-1072, 2017 11.
Article in English | MEDLINE | ID: mdl-29064493

ABSTRACT

Despite recent advances in the synthesis of increasingly complex topologies at the molecular level, nano- and microscopic weaves have remained difficult to achieve. Only a few diaxial molecular weaves exist-these were achieved by templation with metals. Here, we present an extended triaxial supramolecular weave that consists of self-assembled organic threads. Each thread is formed by the self-assembly of a building block comprising a rigid oligoproline segment with two perylene-monoimide chromophores spaced at 18 Å. Upon π stacking of the chromophores, threads form that feature alternating up- and down-facing voids at regular distances. These voids accommodate incoming building blocks and establish crossing points through CH-π interactions on further assembly of the threads into a triaxial woven superstructure. The resulting micrometre-scale supramolecular weave proved to be more robust than non-woven self-assemblies of the same building block. The uniform hexagonal pores of the interwoven network were able to host iridium nanoparticles, which may be of interest for practical applications.

4.
J Am Chem Soc ; 139(21): 7388-7398, 2017 05 31.
Article in English | MEDLINE | ID: mdl-28485968

ABSTRACT

A series of optically active amidine dimers composed of m-terphenyl backbones joined by a variety of linkers, such as achiral and chiral p-phenylene and chiral amide linkers, were synthesized and used as templates for the regio- (head-to-tail (HT) or head-to-head (HH)), diastereo- (anti or syn), and enantioselective [4 + 4] photocyclodimerization of an achiral m-terphenyl-based carboxylic acid monomer bearing a prochiral 2-substituted anthracene at one end (1) through complementary amidinium-carboxylate salt bridges. The amidine dimers linked by p-phenylene linkages almost exclusively afforded the chiral syn-HT and anti-HH dimers at 25 °C, while those joined by amide linkers produced all four dimers. The p-phenylene-linked templates tended to enhance the syn-HT-photodimer formation at high temperatures with no significant changes in the product enantiomeric excess (ee), while the anti-HH-photodimer formation remarkably increased with the decreasing temperature accompanied by a significant enhancement of the product ee up to -86% at -50 °C. Temperature-dependent inversion of the chirality of the anti-HH dimer was observed when the chiral phenylene-linked amidine dimer was used and the product ee was changed from 22% at 50 °C to -86% at -50 °C. A similar enhancement of the enantioselectivity of the anti-HH dimer was also observed for the chiral amide-linked template, producing the anti-HH dimer with up to -88% ee at -50 °C. The observed difference in the regio-, diastereo-, and enantioselectivities due to the difference in the linker structures of the amidine dimers during the template-directed photodimerization of 1 was discussed on the basis of a reversible conformational change in the amidine dimers complexed with 1.

5.
Org Biomol Chem ; 14(46): 10822-10832, 2016 Nov 22.
Article in English | MEDLINE | ID: mdl-27762421

ABSTRACT

The photoirradiation of 9-phenylethynylanthracene in degassed chloroform and benzene afforded not only a [4 + 2]-anti Diels-Alder addition dimer, but also a [4 + 4]-anti-dimer as a minor product for the first time as revealed by single-crystal X-ray analysis, while the anthracene residue was quantitatively oxidised in undegassed dilute chloroform, giving the corresponding endoperoxides. The photochemical reactions of carboxylic acid monomers bearing a 9-phenylethynylanthracene unit at one and both ends were further investigated in the presence and absence of the complementary amidine dimer as the template. It was found that a similar photooxidation reaction of the monomers was significantly suppressed in the presence of the template even in undegassed chloroform. In addition, the template-directed photodimerisation of the mono- and di-9-phenylethynylanthracene-bound monomers was remarkably accelerated 30- or 61-fold in the degassed chloroform, giving the [4 + 2]-anti- and [4 + 4]-anti-dimers as major and minor products, respectively, whereas the di-9-phenylethynylanthracene-bound monomer was preferentially photo-polymerised in the absence of the template.

6.
Nat Commun ; 6: 7236, 2015 Jun 08.
Article in English | MEDLINE | ID: mdl-26051291

ABSTRACT

Self-recognition and self-discrimination within complex mixtures are of fundamental importance in biological systems, which entirely rely on the preprogrammed monomer sequences and homochirality of biological macromolecules. Here we report artificial chirality- and sequence-selective successive self-sorting of chiral dimeric strands bearing carboxylic acid or amidine groups joined by chiral amide linkers with different sequences through homo- and complementary-duplex formations. A mixture of carboxylic acid dimers linked by racemic-1,2-cyclohexane bis-amides with different amide sequences (NHCO or CONH) self-associate to form homoduplexes in a completely sequence-selective way, the structures of which are different from each other depending on the linker amide sequences. The further addition of an enantiopure amide-linked amidine dimer to a mixture of the racemic carboxylic acid dimers resulted in the formation of a single optically pure complementary duplex with a 100% diastereoselectivity and complete sequence specificity stabilized by the amidinium-carboxylate salt bridges, leading to the perfect chirality- and sequence-selective duplex formation.


Subject(s)
Stereoisomerism , Amidines/chemistry , Carboxylic Acids/chemistry , Crystallography, X-Ray , Dimerization , Proton Magnetic Resonance Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...