Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 326(2): 577-86, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18487514

ABSTRACT

The functional roles of metabotropic glutamate receptor (mGluR) 1 in integrative brain functions were investigated using a potent and selective mGluR1 allosteric antagonist, FTIDC [4-[1-(2-fluoropyridine-3-yl)-5-methyl-1H-1,2,3-triazol-4-yl]-N-isopropyl-N-methyl-3,6-dihydropyridine-1(2H)-carboxamide], in comparison with the mGluR5 allosteric antagonist and the mGluR2/3 orthosteric agonist in rodents. FTIDC reduced maternal separation-induced ultrasonic vocalization and stress-induced hyperthermia without affecting behaviors in the elevated plus maze. An mGluR5 antagonist, 2-methyl-6-(phenylethynyl)-pyridine (MPEP), and an mGluR2/3 agonist, LY379268 [(1R,4R,5S,6R)-4-amino-2-oxabicyclo[3.1.0]hexane-4,6-dicarboxylic acid], showed anxiolytic activities in these models, suggesting involvement of postsynaptic mGluR1 in stress-related responses comparable with mGluR5 and mGluR2/3. Analgesic effects of FTIDC were seen in the formalin test but not in the tail immersion test. FTIDC selectively blocked methamphetamine-induced hyperlocomotion and disruption of prepulse inhibition, whereas MPEP and LY379268 did not alter those behaviors, suggesting that pharmacological blockade of mGluR1 could result in antipsychotic-like effects. FTIDC did not elicit catalepsy or impair motor functions at 10 times higher dose than doses showing antipsychotic-like action. In conclusion, blockade of mGluR1 showed antipsychotic-like effects without impairing motor functions, whereas blockade of mGluR5 and activation of mGluR2/3 did not display such activities.


Subject(s)
Anti-Anxiety Agents/pharmacology , Behavior, Animal/drug effects , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Triazoles/pharmacology , Allosteric Regulation , Animals , Anti-Anxiety Agents/chemistry , Brain/drug effects , Brain/metabolism , Fever/drug therapy , Male , Maze Learning , Mice , Mice, Inbred C57BL , Motor Activity/drug effects , Pain/drug therapy , Rats , Rats, Sprague-Dawley , Receptor, Metabotropic Glutamate 5 , Reflex, Startle/drug effects , Triazoles/chemistry , Vocalization, Animal/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...