Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Biol Macromol ; 280(Pt 2): 135840, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39306168

ABSTRACT

The potential alternative of exploring the development of nanocomposites through a single-molecule approach, such as combining chitosan nanoparticles (ChiNP) with chitosan (Chi), remains to be investigated. To maintain the insolubility of the ChiNP filler in the system, the protonation of weakly basic amino groups necessitates the pH of the coating solution above the pKa (6-6.5). This study aimed to evaluate the biofunctional properties improvements of Chi coatings incorporated with ChiNP as filler agents. The coating film forming solution comprised of 0.8 % Chi combined with varying concentrations (0 %, 0.1 %, 0.5 %, and 1 %) of ChiNP. The morphology of ChiNP was characterized via atomic force spectroscopy (AFM). Incorporating the ChiNP (1 %) significantly enhanced antifungal efficacy, i.e., an 88.28 % reduction in fungal activity compared with the control group, and a 65 % reduction compared with pure Chi against Botrytis cinerea. The incorporation of ChiNP improved the ultraviolet and visible light wavelengths, water vapor permeability, hydrophobicity, and thermal properties. Scanning electron microscopy and AFM were performed to assess the surface and internal microstructures of the coating. The findings of this study suggested that the nanocomposite coatings herein presented is potential for use in active packaging, especially in the context of preserving fresh fruit products.

2.
Food Chem ; 461: 140819, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39153372

ABSTRACT

The application of coatings is a strategy for maintaining the freshness of highly perishable fruits. This research aimed to evaluate the quality indices of strawberries (Amaou) coated with new coatings based on the sodium carboxymethyl cellulose (CMC) and cellulose nanofibres (CNF) with incorporated mandarin peel extract (ME) or 1-methylcyclopropene (1-MCP) during storage at 20days at 5 °C and 85% relative humidity (RH). Dissolving the coating solution containing ME in 1-MCP maintained its colour for up to 50 days. Coatings enhanced with ME and/or 1-MCP maintained fresh strawberries more effectively than the control, reducing weight loss and maintaining firmness, total soluble solids (TSS), citric acid, colour, and total phenolic content. The CCM2-2 coating solution showed superior effects on the weight loss and relative percentages of strawberry metabolites compared to the other coatings, as confirmed by the different components.


Subject(s)
Citrus , Cyclopropanes , Food Preservation , Food Storage , Fragaria , Fruit , Plant Extracts , Fruit/chemistry , Fragaria/chemistry , Fragaria/metabolism , Food Preservation/methods , Cyclopropanes/chemistry , Cyclopropanes/pharmacology , Plant Extracts/chemistry , Citrus/chemistry , Metabolome , Cold Temperature
3.
Int J Biol Macromol ; 262(Pt 1): 130014, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38340933

ABSTRACT

The incorporation of ginger oil (GO) influenced the physical, optical, and structural properties of the chitosan (CH) film including the decreases of moisture content (60.15 %), water solubility (35.37 %) and water vapor permeability (WVP) (32.79 %) and the increases of tensile strength (TS) (125 %), elongation at break (EAB) (2.74 %) and opacity (131.08 %). Antifungal capacity of the CH film was enhanced when GO was added to the film. The CH + GO film showed a less homogeneous surface that the presence of the oil droplets on the film surface. Moreover, the CH and CH + GO coatings reduced weight loss of persimmon by 14.87 %, and 21.13 %, respectively, compared to the control. Moisture content loss of the coated CH- and the coated CH + GO- persimmons was decreased by 1.94 % and 4.92 %, respectively, compared to that of the control persimmon. Furthermore, the CH and CH + GO coatings decreased in color changes, respiration rate, ethylene production, changes in pH and TSS, and remained firmness of persimmon during storage at 25 °C. In addition, X-ray CT images can be used to monitor internal changes and observe the tissue breakdown during storage period. The ΔGS value can be used as a predictor of persimmon internal qualities. Thus, the CH film containing GO can be applied as an active packaging material.


Subject(s)
Chitosan , Diospyros , Edible Films , Oils, Volatile , Zingiber officinale , Chitosan/chemistry , Tomography, X-Ray Computed , Permeability , Food Packaging
4.
Int J Biol Macromol ; 263(Pt 2): 130299, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387633

ABSTRACT

In this study, development of bioactive coatings containing 1 % (w/v) chitosan (CS), 0.6 % (w/v) diepoxy-polyethylene glycol (PEG), and trans-cinnamaldehyde (CIN) was achieved. The physicochemical and biological properties of the coatings were investigated. The tensile strength, light transmission, water vapor permeability (WVP), and antibacterial properties were enhanced by the incorporation of CIN. The CIN-containing films appeared compact and rough, as observed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). In addition, the quality attributes of the bananas were evaluated at room temperature for 24 days, and the results showed that the CS/PEG/CIN coating delayed the respiration peak, weight loss, sugar content loss, and maintained firmness, color, total soluble solids (TSS), titratable acid (TA), and the appearance of the bananas. Principal component analysis (PCA) revealed that the bioactive coating significantly affected the respiration rate and weight loss of bananas.


Subject(s)
Acrolein/analogs & derivatives , Chitosan , Musa , Oils, Volatile , Chitosan/chemistry , Polyethylene Glycols/chemistry , Oils, Volatile/pharmacology , Weight Loss
5.
Int J Biol Macromol ; 246: 125680, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37406895

ABSTRACT

Bioactive films of chitosan (CS)/polyvinyl alcohol (PVA)/trans-cinnamaldehyde (CIN) were prepared by co-blending, and the impact of varying concentrations (0.5, 1.0 and 1.5 %) of CIN on the physicochemical properties of the ternary films was investigated. The ATR/FT-IR analysis revealed that the bioactive film is modulated by Schiff base (C=N) and hydrogen-bond interactions of CS, PVA, and CIN. Inclusion of CIN into the film improved mechanical properties with tensile strength increased from 0.5 % (68.52 MPa) to 1.5 % (76.95 MPa). The presence of CIN within the CS/PVA film also remarkably affected oxygen permeability and improved light transmittance. Additionally, the water barrier and contact angle properties were improved with increasing CIN content. The morphology of the CIN-containing films appeared non-stratified and dense when observed by SEM and AFM. Moreover, spore germination and in vitro assays confirmed strong antifungal activity of the CIN-containing film against P. italicum (~90 %) and B. cinerea (~85 %). The ternary films also exhibited excellent antioxidant activity, as evidenced by DPPH radical scavenging activity (31.43 %) and ferric reducing power (OD700 nm = 0.172) at the highest CIN concentration tested. Thus, this bioactive CIN films are proposed as a versatile packaging material for the food industry.


Subject(s)
Chitosan , Chitosan/chemistry , Polyvinyl Alcohol/chemistry , Spectroscopy, Fourier Transform Infrared , Food Packaging , Tensile Strength
6.
Int J Biol Macromol ; 209(Pt A): 597-607, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35398390

ABSTRACT

The objective of this study was to determine the properties of natural jicama starch and edible film made from the starch. The film was prepared by adding agarwood aetoxylon bouya essential oil and calcium propionate to investigate its properties as an edible coating for fruit or vegetables. The microstructure of the edible film was observed using scanning electron microscopy. The three main materials mostly had significant effects (P < 0.05) on the properties of the sample films, and starch film incorporating essential oil­calcium propionate showed optimum properties as an edible coating material because it had the highest elongation of 10.81%, the lowest stiffness with a Young's modulus of about 2.53 MPa, the lowest of water vapor transmission rate and permeability of 0.117 g h-1 m-2 and 3.092 g mm h-1 m-2 kPa-1, respectively, and the lowest weight loss of 75.30%. It was also found that the microstructure of starch-essential oil­calcium propionate film had a homogeneous surface and the presence of essential oil droplets was not visible.


Subject(s)
Edible Films , Oils, Volatile , Pachyrhizus , Food Packaging , Permeability , Propionates , Starch/chemistry , Tensile Strength , Vegetables
7.
Sci Rep ; 11(1): 18412, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34531497

ABSTRACT

A novel composite edible coating film was developed from 0.8% chitosan (CS) and 0.5% sandalwood oil (SEO). Cellulose nanofibers (CNFs) were used as a stabilizer agent of oil-in-water Pickering emulsion. We found four typical groups of CNF level-dependent emulsion stabilization, including (1) unstable emulsion in the absence of CNFs; (2) unstable emulsion (0.006-0.21% CNFs); (3) stable emulsion (0.24-0.31% CNFs); and (4) regular emulsion with the addition of surfactant. Confocal laser scanning microscopy was performed to reveal the characteristics of droplet diameter and morphology. Antifungal tests against Botrytis cinerea and Penicillium digitatum, between emulsion coating stabilized with CNFs (CS-SEOpick) and CS or CS-SEO was tested. The effective concentration of CNFs (0.24%) may improve the performance of CS coating and maintain CS-SEO antifungal activity synergistically confirmed with a series of assays (in vitro, in vivo, and membrane integrity changes). The incorporation of CNFs contributed to improve the functional properties of CS and SEO-loaded CS including light transmission at UV and visible light wavelengths and tensile strength. Atomic force microscopy and scanning electron microscopy were employed to characterize the biocompatibility of each coating film formulation. Emulsion-CNF stabilized coating may have potential applications for active coating for fresh fruit commodities.


Subject(s)
Antifungal Agents/pharmacology , Cellulose/chemistry , Chitosan/chemistry , Emulsions/chemistry , Fruit/drug effects , Nanofibers/chemistry , Plant Oils/chemistry , Sesquiterpenes/chemistry , Cell Membrane Permeability/drug effects , Citrus sinensis/drug effects , Color , Fungi/drug effects , Fungi/growth & development , Light , Malus/drug effects , Microscopy, Atomic Force , Nanofibers/ultrastructure , Surface Properties , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL