Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
In Vivo ; 38(1): 453-459, 2024.
Article in English | MEDLINE | ID: mdl-38148079

ABSTRACT

BACKGROUND/AIM: In recent years, the Geriatric Nutritional Risk Index (GNRI) has been reported as a predictor of prognosis in many patients with cancer. This study investigated the association of preoperative GNRI with the occurrence of adverse events and duration of treatment with capecitabine plus oxaliplatin (CAPOX), a postoperative adjuvant chemotherapy, in 59 patients with colorectal cancer from September 2019 to April 2022. PATIENTS AND METHODS: A cut-off value of 100.9 was used to categorize patients into high and low GNRI groups. RESULTS: The incidence of grade ≥2 leukopenia (p=0.03), and all grades peripheral neuropathy (p=0.04) were significantly more frequent in the low GNRI group. Analysis of factors influencing treatment duration by univariate and multivariate Cox regression proportional hazards models showed a significant difference in GNRI (p=0.0097). CONCLUSION: GNRI, a nutritional indicator assessed before the start of treatment, influences the occurrence of adverse events and duration of treatment with CAPOX as adjuvant chemotherapy. To complete CAPOX therapy, preoperatively, it is important to assess the patients' nutritional status using the GNRI and to actively intervene in nutritional therapy.


Subject(s)
Colorectal Neoplasms , Duration of Therapy , Humans , Aged , Nutritional Status , Prognosis , Oxaliplatin/adverse effects , Colorectal Neoplasms/drug therapy , Chemotherapy, Adjuvant/adverse effects , Nutrition Assessment , Risk Factors , Retrospective Studies
2.
Nature ; 550(7674): 80-83, 2017 10 04.
Article in English | MEDLINE | ID: mdl-28980637

ABSTRACT

Type Ia supernovae arise from the thermonuclear explosion of white-dwarf stars that have cores of carbon and oxygen. The uniformity of their light curves makes these supernovae powerful cosmological distance indicators, but there have long been debates about exactly how their explosion is triggered and what kind of companion stars are involved. For example, the recent detection of the early ultraviolet pulse of a peculiar, subluminous type Ia supernova has been claimed as evidence for an interaction between a red-giant or a main-sequence companion and ejecta from a white-dwarf explosion. Here we report observations of a prominent but red optical flash that appears about half a day after the explosion of a type Ia supernova. This supernova shows hybrid features of different supernova subclasses, namely a light curve that is typical of normal-brightness supernovae, but with strong titanium absorption, which is commonly seen in the spectra of subluminous ones. We argue that this early flash does not occur through previously suggested mechanisms such as the companion-ejecta interaction. Instead, our simulations show that it could occur through detonation of a thin helium shell either on a near-Chandrasekhar-mass white dwarf, or on a sub-Chandrasekhar-mass white dwarf merging with a less-massive white dwarf. Our finding provides evidence that one branch of previously proposed explosion models-the helium-ignition branch-does exist in nature, and that such a model may account for the explosions of white dwarfs in a mass range wider than previously supposed.

3.
Philos Trans A Math Phys Eng Sci ; 375(2105)2017 Oct 28.
Article in English | MEDLINE | ID: mdl-28923993

ABSTRACT

Spectropolarimetry is one of the most powerful methods to study the multi-dimensional geometry of supernovae (SNe). We present a brief summary of the spectropolarimetric observations of stripped-envelope core-collapse SNe. Observations indicate that stripped-envelope SNe generally have a non-axisymmetric ion distribution in the ejecta. Three-dimensional clumpy geometry nicely explains the observed properties. A typical size of the clumps deduced from observations is relatively large: [Formula: see text]25% of the photosphere. Such a large-scale clumpy structure is similar to that observed in Cassiopeia A, and suggests that large-scale convection or standing accretion shock instability takes place at the onset of the explosion.This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.

4.
Nat Commun ; 7: 12898, 2016 Sep 23.
Article in English | MEDLINE | ID: mdl-27659791

ABSTRACT

GRB 050709 was the first short Gamma-ray Burst (sGRB) with an identified optical counterpart. Here we report a reanalysis of the publicly available data of this event and the discovery of a Li-Paczynski macronova/kilonova that dominates the optical/infrared signal at t>2.5 days. Such a signal would arise from 0.05 r-process material launched by a compact binary merger. The implied mass ejection supports the suggestion that compact binary mergers are significant and possibly main sites of heavy r-process nucleosynthesis. Furthermore, we have reanalysed all afterglow data from nearby short and hybrid GRBs (shGRBs). A statistical study of shGRB/macronova connection reveals that macronova may have taken place in all these GRBs, although the fraction as low as 0.18 cannot be ruled out. The identification of two of the three macronova candidates in the I-band implies a more promising detection prospect for ground-based surveys.

5.
Nature ; 456(7222): 617-9, 2008 Dec 04.
Article in English | MEDLINE | ID: mdl-19052622

ABSTRACT

Type Ia supernovae are thermonuclear explosions of white dwarf stars in close binary systems. They play an important role as cosmological distance indicators and have led to the discovery of the accelerated expansion of the Universe. Among the most important unsolved questions about supernovae are how the explosion actually proceeds and whether accretion occurs from a companion or by the merging of two white dwarfs. Tycho Brahe's supernova of 1572 (SN 1572) is thought to be one of the best candidates for a type Ia supernova in the Milky Way. The proximity of the SN 1572 remnant has allowed detailed studies, such as the possible identification of the binary companion, and provides a unique opportunity to test theories of the explosion mechanism and the nature of the progenitor. The determination of the hitherto unknown spectroscopic type of this supernova is crucial in relating these results to the diverse population of type Ia supernovae. Here we report an optical spectrum of Tycho's supernova near maximum brightness, obtained from a scattered-light echo more than four centuries after the direct light from the explosion swept past the Earth. We find that SN 1572 belongs to the majority class of normal type Ia supernovae.

6.
Science ; 321(5893): 1185-8, 2008 Aug 29.
Article in English | MEDLINE | ID: mdl-18653846

ABSTRACT

The only supernovae (SNe) to show gamma-ray bursts (GRBs) or early x-ray emission thus far are overenergetic, broad-lined type Ic SNe (hypernovae, HNe). Recently, SN 2008D has shown several unusual features: (i) weak x-ray flash (XRF), (ii) an early, narrow optical peak, (iii) disappearance of the broad lines typical of SN Ic HNe, and (iv) development of helium lines as in SNe Ib. Detailed analysis shows that SN 2008D was not a normal supernova: Its explosion energy (E approximately 6x10(51) erg) and ejected mass [ approximately 7 times the mass of the Sun (M(middle dot in circle))] are intermediate between normal SNe Ibc and HNe. We conclude that SN 2008D was originally a approximately 30 M(middle dot in circle) star. When it collapsed, a black hole formed and a weak, mildly relativistic jet was produced, which caused the XRF. SN 2008D is probably among the weakest explosions that produce relativistic jets. Inner engine activity appears to be present whenever massive stars collapse to black holes.

7.
Science ; 319(5867): 1220-3, 2008 Feb 29.
Article in English | MEDLINE | ID: mdl-18239091

ABSTRACT

Core-collapse supernovae (CC-SNe) are the explosions that announce the death of massive stars. Some CC-SNe are linked to long-duration gamma-ray bursts (GRBs) and are highly aspherical. One important question is to what extent asphericity is common to all CC-SNe. Here we present late-time spectra for a number of CC-SNe from stripped-envelope stars and use them to explore any asphericity generated in the inner part of the exploding star, near the site of collapse. A range of oxygen emission-line profiles is observed, including a high incidence of double-peaked profiles, a distinct signature of an aspherical explosion. Our results suggest that all CC-SNe from stripped-envelope stars are aspherical explosions and that SNe accompanied by GRBs exhibit the highest degree of asphericity.

8.
Nature ; 442(7106): 1018-20, 2006 Aug 31.
Article in English | MEDLINE | ID: mdl-16943833

ABSTRACT

Supernovae connected with long-duration gamma-ray bursts (GRBs) are hyper-energetic explosions resulting from the collapse of very massive stars ( approximately 40 M\circ, where M\circ is the mass of the Sun) stripped of their outer hydrogen and helium envelopes. A very massive progenitor, collapsing to a black hole, was thought to be a requirement for the launch of a GRB. Here we report the results of modelling the spectra and light curve of SN 2006aj (ref. 9), which demonstrate that the supernova had a much smaller explosion energy and ejected much less mass than the other GRB-supernovae, suggesting that it was produced by a star whose initial mass was only approximately 20 M\circ. A star of this mass is expected to form a neutron star rather than a black hole when its core collapses. The smaller explosion energy of SN 2006aj is matched by the weakness and softness of GRB 060218 (an X-ray flash), and the weakness of the radio flux of the supernova. Our results indicate that the supernova-GRB connection extends to a much broader range of stellar masses than previously thought, possibly involving different physical mechanisms: a 'collapsar' (ref. 8) for the more massive stars collapsing to a black hole, and magnetic activity of the nascent neutron star for the less massive stars.

SELECTION OF CITATIONS
SEARCH DETAIL
...