Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Psychol ; 15: 1350631, 2024.
Article in English | MEDLINE | ID: mdl-38966733

ABSTRACT

Core to understanding emotion are subjective experiences and their expression in facial behavior. Past studies have largely focused on six emotions and prototypical facial poses, reflecting limitations in scale and narrow assumptions about the variety of emotions and their patterns of expression. We examine 45,231 facial reactions to 2,185 evocative videos, largely in North America, Europe, and Japan, collecting participants' self-reported experiences in English or Japanese and manual and automated annotations of facial movement. Guided by Semantic Space Theory, we uncover 21 dimensions of emotion in the self-reported experiences of participants in Japan, the United States, and Western Europe, and considerable cross-cultural similarities in experience. Facial expressions predict at least 12 dimensions of experience, despite massive individual differences in experience. We find considerable cross-cultural convergence in the facial actions involved in the expression of emotion, and culture-specific display tendencies-many facial movements differ in intensity in Japan compared to the U.S./Canada and Europe but represent similar experiences. These results quantitatively detail that people in dramatically different cultures experience and express emotion in a high-dimensional, categorical, and similar but complex fashion.

2.
Sci Adv ; 9(46): eadj3906, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37967184

ABSTRACT

Visual illusions provide valuable insights into the brain's interpretation of the world given sensory inputs. However, the precise manner in which brain activity translates into illusory experiences remains largely unknown. Here, we leverage a brain decoding technique combined with deep neural network (DNN) representations to reconstruct illusory percepts as images from brain activity. The reconstruction model was trained on natural images to establish a link between brain activity and perceptual features and then tested on two types of illusions: illusory lines and neon color spreading. Reconstructions revealed lines and colors consistent with illusory experiences, which varied across the source visual cortical areas. This framework offers a way to materialize subjective experiences, shedding light on the brain's internal representations of the world.


Subject(s)
Form Perception , Illusions , Visual Cortex , Humans , Brain , Neural Networks, Computer , Visual Perception
3.
Plant J ; 104(2): 460-473, 2020 10.
Article in English | MEDLINE | ID: mdl-32717107

ABSTRACT

Previous studies have revealed duplications and diversification of myosin XI genes between angiosperms and bryophytes; however, the functional differentiation and conservation of myosin XI between them remain unclear. Here, we identified a single myosin XI gene from the liverwort Marchantia polymorpha (Mp). The molecular properties of Mp myosin XI are similar to those of Arabidopsis myosin XIs responsible for cytoplasmic streaming, suggesting that the motor function of myosin XI is able to generate cytoplasmic streaming. In cultured Arabidopsis cells, transiently expressed green fluorescent protein (GFP)-fused Mp myosin XI was observed as some intracellular structures moving along the F-actin. These intracellular structures were co-localized with motile endoplasmic reticulum (ER) strands, suggesting that Mp myosin XI binds to the ER and generates intracellular transport in Arabidopsis cells. The tail domain of Mp myosin XI was co-localized with that of Arabidopsis myosin XI-2 and XI-K, suggesting that all these myosin XIs bind to common cargoes. Furthermore, expression of GFP-fused Mp myosin XI rescued the defects of growth, cytoplasmic streaming and actin organization in Arabidopsis multiple myosin XI knockout mutants. The heterologous expression experiments demonstrated the cellular and physiological competence of Mp myosin XI in Arabidopsis. However, the average velocity of organelle transport in Marchantia rhizoids was 0.04 ± 0.01 µm s-1 , which is approximately one-hundredth of that in Arabidopsis cells. Taken together, our results suggest that the molecular properties of myosin XI are conserved, but myosin XI-driven intracellular transport in vivo would be differentiated from bryophytes to angiosperms.


Subject(s)
Arabidopsis/genetics , Marchantia/genetics , Myosins/genetics , Myosins/metabolism , Actin Cytoskeleton/metabolism , Arabidopsis/cytology , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Cells, Cultured , Cytoplasm/metabolism , Endoplasmic Reticulum/metabolism , Plant Cells/metabolism , Plant Proteins/genetics , Plants, Genetically Modified
4.
Rapid Commun Mass Spectrom ; 16(11): 1059-64, 2002.
Article in English | MEDLINE | ID: mdl-11992508

ABSTRACT

Molecular and intramolecular carbon isotope measurements of acetic acid present in natural environments have been performed by off-line procedures. The off-line method is complicated and time-consuming and requires micromolar to millimolar amounts of sample. This limits geochemical isotopic studies, especially at the intramolecular level, on acetic acid present in natural samples. Here, we examine an on-line measurement of intramolecular carbon isotope distribution of acetic acid using continuous-flow isotope ratio mass spectrometry (CF-IRMS) coupled with an on-line pyrolysis system. This is achieved by measurement of the respective carbon isotope ratios of CH4 and CO2 produced by on-line pyrolysis of acetic acid. Results for authentic standards of pure acetic acid demonstrated the practicality of this on-line method, although the carbon isotope ratio of the methyl group could not be determined directly. The precision of the carbon isotope measurements was 0.4 per thousand (1sigma). The carbon isotope distribution determined by the on-line method was identical to that determined by the conventional off-line method within analytical error. The advantages of the on-line method compared with the conventional off-line method are that it is less laborious, requires less analytical time (less than one hour per sample) and, most importantly, uses smaller sample sizes (ca. 10 nanomole). An application of this on-line method to natural geochemical samples will provide an insight into the geochemical cycle of acetic acid.


Subject(s)
Acetic Acid/analysis , Carbon/chemistry , Mass Spectrometry/methods , Carbon Dioxide/chemistry , Carbon Isotopes , Mass Spectrometry/instrumentation , Methane/chemistry , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...