Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 160(2)2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38189806

ABSTRACT

To spectroscopically qualify strength in the π-electron conjugation, the electronic spectra of jet-cooled 1,4-bis(phenylethynyl)benzene (BPEB) in the region of the transition to the lowest excited singlet (S1) 1B1u state are measured by the fluorescence excitation and the single-vibronic-level dispersed fluorescence methods. Strength is defined as the difference in potential energies between the planar and perpendicular conformations. BPEB possesses two large-amplitude torsional motions, out-of-phase 24 and in-phase 29 modes. The most stable is the planar conformation, and barrier heights at the perpendicular conformation are coincident in torsional potentials for the two modes. Torsional levels are successively observed up to 19± and 16- quantum levels in the ground state, respectively. Strength is determined to be 293 cm-1 (3.51 kJmol-1) with an accuracy of an error range smaller than 1 cm-1. In the excited state, strength is estimated to be 1549 ± 73 cm-1. Combination levels of two torsional modes are also measured up to high quantum levels. A systematic decrease in frequencies is observed with increasing the quantum number. Quantum-chemistry calculations of B3LYP, CAM-B3PLYP, WB97XD, and M062X with basis sets of aug-cc-pVDZ are performed, where B3LYP theories are carried out with the dispersion correlation. The calculated strength is 1.1-2.1 times larger than observed.

2.
J Pain Res ; 15: 1421-1432, 2022.
Article in English | MEDLINE | ID: mdl-35599974

ABSTRACT

Background: Refractory chronic pain in the orofacial region involves central sensitization (CS). However, not all chronic pain patients exhibit CS. An objective assessment of CS may be useful for pain management. Changes in the balance of excitatory and inhibitory neural activity or excessive activity of nerves and glial cells may cause CS and contribute to pain chronification. Patients and Methods: 1H-magnetic resonance spectra were acquired from the anterior cingulate cortex (ACC) and thalamus in 20 patients with chronic orofacial pain and suspected CS, and 21 healthy volunteers, using a single-voxel point-resolved spectroscopy sequence. The patients were assessed using the Central Sensitization Inventory. Results: Aspartate/total creatine (tCr) and glutathione in the ACC were significantly higher in the patient group. However, no significant difference was observed between groups in the neurometabolites measured in the thalamus. Patients also exhibited a tendency for increased gamma-aminobutyric acid (GABA)/tCr in the ACC. There were positive relationships between Central Sensitization Inventory scores and glutamate + glutamine (Glx) in the thalamus, a positive trend for Glx in the ACC and a negative relationship for GABA/tCr in the ACC. Conclusion: The high levels of aspartate/tCr and glutathione in the patient group suggest excitatory neuronal activity and hyperactivity of neurons and glial cells. The correlation analysis results suggest that excitatory and inhibitory neurometabolites are involved in the chronification of orofacial pain, including CS.

3.
Chemistry ; 27(3): 1127-1137, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33020962

ABSTRACT

A semiconductor-metal-complex hybrid photocatalyst was previously reported for CO2 reduction; this photocatalyst is composed of nitrogen-doped Ta2 O5 as a semiconductor photosensitizer and a Ru complex as a CO2 reduction catalyst, operating under visible light (>400 nm), with high selectivity for HCOOH formation of more than 75 %. The electron transfer from a photoactive semiconductor to the metal-complex catalyst is a key process for photocatalytic CO2 reduction with hybrid photocatalysts. Herein, the excited-state dynamics of several hybrid photocatalysts are described by using time-resolved emission and infrared absorption spectroscopies to understand the mechanism of electron transfer from a semiconductor to the metal-complex catalyst. The results show that electron transfer from the semiconductor to the metal-complex catalyst does not occur directly upon photoexcitation, but that the photoexcited electron transfers to a new excited state. On the basis of the present results and previous reports, it is suggested that the excited state is a charge-transfer state located between shallow defects of the semiconductor and the metal-complex catalyst.

4.
Inorg Chem ; 58(17): 11480-11492, 2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31418554

ABSTRACT

The supramolecular photocatalysts in which a Ru(II) complex as a molecular redox photosensitizer unit and a Re(I) complex as a molecular catalyst unit are connected with a various alkyl or ether chain have attracted attention because they can efficiently photocatalyze CO2 reduction with high durability and high selectivity of CO formation, especially on various solid materials such as semiconductor electrodes and mesoporous organosilica. The intramolecular electron transfer from the one-electron reduced photosensitizer unit to the catalyst unit, which follows excitation of the photosensitizer unit and subsequent reductive quenching of the excited photosensitizer unit by a reductant, is one of the most important processes in the photocatalytic reduction of CO2. We succeeded in determining the rate constants of this intramolecular electron transfer process by using subnanosecond time-resolved IR spectroscopy. The logarithm of rate constants shows a linear relationship with the lengths of the bridging chain in the supramolecular photocatalysts with one bridging alkyl or ether chain. In conformity with the exponential decay of the wave function and the coupling element in the long-distance electron transfer, the apparent decay coefficient factor (ß) in the supramolecular photocatalysts with one bridging chain was determined to be 0.74 Å-1. In the supramolecular photocatalyst with two ethylene chains connecting between the photosensitizer and catalyst units, on the other hand, the intramolecular electron transfer rate is much faster than that with only one ethylene chain. These results strongly indicate that the intramolecular electron transfer from the one-electron reduced species of the Ru photosensitizer unit to the Re catalyst unit proceeds by the through-bond mechanism.

5.
J Phys Chem Lett ; 10(10): 2475-2480, 2019 May 16.
Article in English | MEDLINE | ID: mdl-30973013

ABSTRACT

Thermally activated delayed fluorescence (TADF) molecules are gathering attention for their potential to boost the efficiency of organic light-emitting diodes without precious metals. Minimizing the energy difference between the S1 and T1 states (Δ EST) is a fundamental strategy to accelerate reverse intersystem crossing (RISC). However, the lack of microscopic understanding of the process prevents adequate design strategies for efficient TADF materials. Here, we focused on four carbazole-benzonitrile (Cz-BN) derivatives that possess identical Δ EST but distinct TADF activities. We systematically compared their geometrical dynamics upon photoexcitation using time-resolved infrared (TR-IR) vibrational spectroscopy in conjunction with quantum chemical calculations. We found that the most TADF-active molecule, 4CzBN, shows little structural change after photoexcitation, while the TADF-inactive molecules show relatively large deformation upon S1-T1 conversion. This implies that the suppression of structural deformation is critical for minimizing the activation energy barrier for RISC in cases of the Cz-BN derivatives.

6.
J Am Chem Soc ; 139(44): 15792-15800, 2017 11 08.
Article in English | MEDLINE | ID: mdl-29037042

ABSTRACT

Aromaticity of photoexcited molecules is an important concept in organic chemistry. Its theory, Baird's rule for triplet aromaticity since 1972 gives the rationale of photoinduced conformational changes and photochemical reactivities of cyclic π-conjugated systems. However, it is still challenging to monitor the dynamic structural change induced by the excited-state aromaticity, particularly in condensed materials. Here we report direct structural observation of a molecular motion and a subsequent packing deformation accompanied by the excited-state aromaticity. Photoactive liquid crystal (LC) molecules featuring a π-expanded cyclooctatetraene core unit are orientationally ordered but loosely packed in a columnar LC phase, and therefore a photoinduced conformational planarization by the excited-state aromaticity has been successfully observed by time-resolved electron diffractometry and vibrational spectroscopy. The structural change took place in the vicinity of excited molecules, producing a twisted stacking structure. A nanoscale torque driven by the excited-state aromaticity can be used as the working mechanism of new photoresponsive materials.

7.
J Chem Phys ; 145(2): 024504, 2016 Jul 14.
Article in English | MEDLINE | ID: mdl-27421417

ABSTRACT

The atomic and electronic dynamics in the topological insulator (TI) Bi2Te3 under strong photoexcitation were characterized with time-resolved electron diffraction and time-resolved mid-infrared spectroscopy. Three-dimensional TIs characterized as bulk insulators with an electronic conduction surface band have shown a variety of exotic responses in terms of electronic transport when observed under conditions of applied pressure, magnetic field, or circularly polarized light. However, the atomic motions and their correlation between electronic systems in TIs under strong photoexcitation have not been explored. The artificial and transient modification of the electronic structures in TIs via photoinduced atomic motions represents a novel mechanism for providing a comparable level of bandgap control. The results of time-domain crystallography indicate that photoexcitation induces two-step atomic motions: first bismuth and then tellurium center-symmetric displacements. These atomic motions in Bi2Te3 trigger 10% bulk bandgap narrowing, which is consistent with the time-resolved mid-infrared spectroscopy results.

8.
Rev Sci Instrum ; 85(8): 083705, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25173274

ABSTRACT

We constructed an instrument for time-resolved photoemission electron microscopy (TR-PEEM) utilizing femtosecond (fs) laser pulses to visualize the dynamics of photogenerated electrons in semiconductors on ultrasmall and ultrafast scales. The spatial distribution of the excited electrons and their relaxation and/or recombination processes were imaged by the proposed TR-PEEM method with a spatial resolution about 100 nm and an ultrafast temporal resolution defined by the cross-correlation of the fs laser pulses (240 fs). A direct observation of the dynamical behavior of electrons on higher resistivity samples, such as semiconductors, by TR-PEEM has still been facing difficulties because of space and/or sample charging effects originating from the high photon flux of the ultrashort pulsed laser utilized for the photoemission process. Here, a regenerative amplified fs laser with a widely tunable repetition rate has been utilized, and with careful optimization of laser parameters, such as fluence and repetition rate, and consideration for carrier lifetimes, the electron dynamics in semiconductors were visualized. For demonstrating our newly developed TR-PEEM method, the photogenerated carrier lifetimes around a nanoscale defect on a GaAs surface were observed. The obtained lifetimes were on a sub-picosecond time scale, which is much shorter than the lifetimes of carriers observed in the non-defective surrounding regions. Our findings are consistent with the fact that structural defects induce mid-gap states in the forbidden band, and that the electrons captured in these states promptly relax into the ground state.

9.
Inorg Chem ; 53(5): 2481-90, 2014 Mar 03.
Article in English | MEDLINE | ID: mdl-24528148

ABSTRACT

This work involved a detailed investigation into the infrared vibrational spectra of ruthenium polypyridyl complexes, specifically heteroleptic [Ru(bpy)2(bpm)](2+) (bpy = 2,2'-bipyridine and bpm = 2,2'-bipyrimidine) and homoleptic [Ru(bpy)3](2+), in the excited triplet state. Transient spectra were acquired 500 ps after photoexcitation, corresponding to the vibrational ground state of the excited triplet state, using time-resolved infrared spectroscopy. We assigned the observed bands to specific ligands in [Ru(bpy)2(bpm)](2+) based on the results of deuterium substitution and identified the corresponding normal vibrational modes using quantum-chemical calculations. Through this process, the more complex vibrational bands of [Ru(bpy)3](2+) were assigned to normal vibrational modes. The results are in good agreement with the model in which excited electrons are localized on a single ligand. We also found that the vibrational bands of both complexes associated with the ligands on which electrons are little localized appear at approximately 1317 and 1608 cm(-1). These assignments should allow the study of the reaction dynamics of various photofunctional systems including ruthenium polypyridyl complexes.


Subject(s)
2,2'-Dipyridyl/analogs & derivatives , Coordination Complexes/chemistry , Models, Molecular , Organometallic Compounds/chemistry , Quantum Theory , Ruthenium/chemistry , Spectrophotometry, Infrared , 2,2'-Dipyridyl/chemistry , Molecular Structure , Vibration
10.
J Chem Phys ; 134(8): 084311, 2011 Feb 28.
Article in English | MEDLINE | ID: mdl-21361543

ABSTRACT

We have determined the potential-energy function for the internal rotation of the methyl group for o- and m-ethynyltoluene in the electronic excited (S(1)) and ground (S(0)) states by measuring the fluorescence excitation and single-vibronic-level dispersed fluorescence spectra in a jet. The 0-0 bands were observed at 35 444 and 35 416 cm(-1), respectively. The methyl group in o-ethynyltoluene is shown to be a rigid rotor with a potential barrier to rotation of 190 ± 10 cm(-1) in both states. No change in the conformation occurred upon excitation. Barrier heights of m-ethynyltoluene in the S(0) and S(1) states are shown to be 19 ± 3 and 101 ± 1 cm(-1), respectively. A conformational change occurred with rotation by 60[ordinal indicator, masculine] upon excitation. The potential parameters were as follows: reduced rotational constant (B) of 5.323 cm(-1), centrifugal-distortion constant (D) of 6.481 × 10(-5) cm(-1), V(3) = 19 cm(-1), V(6) = -6 cm(-1), and V(9) = 0 cm(-1) in the S(0) state, and B = 5.015 cm(-1), D = 5.392 × 10(-5) cm(-1), V(3) = 101 cm(-1), V(6) = -22 cm(-1), and V(9) = -2 cm(-1) in the S(1) state. For m-methylstyrene, m-tolunitrile, and m-ethynyltoluene, which all have a multiple-bonded carbon in the substituent, we found a new correlation between the Hammett substituent constant σ(m) and the change in the barrier of the methyl group upon excitation.

11.
J Chem Phys ; 132(16): 164309, 2010 Apr 28.
Article in English | MEDLINE | ID: mdl-20441277

ABSTRACT

The electronic spectra of jet-cooled isoindoline between the electronic ground (S(0)) state and the pi pi(*) lowest-excited singlet state (S(1)) were observed by the fluorescence excitation and single-vibronic-level dispersed fluorescence methods. The low-frequency progression due to the puckering vibration appeared in both spectra. Analysis of dispersed spectra together with geometry optimization at the level of B3LYP/6-311+G(d) indicated the presence of conformational isomers possessing axial and equatorial N-H bonds with respect to the molecular plane. The 0-0 bands of the axial and equatorial conformers were measured at 37,022 and 36,761 cm(-1), respectively. Three common levels in the S(1) state accessible from the respective S(0)-state zero levels were observed. From their transition frequencies, the S(0)-state energy difference between the isomers was determined to be 47.7+/-0.2 cm(-1), where the axial conformer was more stable. In the S(1) state, the energy difference was 213.7+/-0.2 cm(-1), and the equatorial conformer was more stable. The cause of switching from a stable conformation upon excitation is discussed in terms of the electron conjugation between the pi(*) orbital in benzene and the lone pair orbital of nitrogen.

SELECTION OF CITATIONS
SEARCH DETAIL
...