Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 498(7455): 511-5, 2013 Jun 27.
Article in English | MEDLINE | ID: mdl-23728303

ABSTRACT

Rev-Erb-α and Rev-Erb-ß are nuclear receptors that regulate the expression of genes involved in the control of circadian rhythm, metabolism and inflammatory responses. Rev-Erbs function as transcriptional repressors by recruiting nuclear receptor co-repressor (NCoR)-HDAC3 complexes to Rev-Erb response elements in enhancers and promoters of target genes, but the molecular basis for cell-specific programs of repression is not known. Here we present evidence that in mouse macrophages Rev-Erbs regulate target gene expression by inhibiting the functions of distal enhancers that are selected by macrophage-lineage-determining factors, thereby establishing a macrophage-specific program of repression. Remarkably, the repressive functions of Rev-Erbs are associated with their ability to inhibit the transcription of enhancer-derived RNAs (eRNAs). Furthermore, targeted degradation of eRNAs at two enhancers subject to negative regulation by Rev-Erbs resulted in reduced expression of nearby messenger RNAs, suggesting a direct role of these eRNAs in enhancer function. By precisely defining eRNA start sites using a modified form of global run-on sequencing that quantifies nascent 5' ends, we show that transfer of full enhancer activity to a target promoter requires both the sequences mediating transcription-factor binding and the specific sequences encoding the eRNA transcript. These studies provide evidence for a direct role of eRNAs in contributing to enhancer functions and suggest that Rev-Erbs act to suppress gene expression at a distance by repressing eRNA transcription.


Subject(s)
Down-Regulation/genetics , Enhancer Elements, Genetic/genetics , Macrophages/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Transcription, Genetic/genetics , Alleles , Animals , Base Sequence , Binding Sites , Gene Knockdown Techniques , Mice , Nuclear Receptor Subfamily 1, Group D, Member 1/deficiency , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Organ Specificity , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Response Elements/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...