Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Integr Plant Biol ; 56(2): 181-8, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24325406

ABSTRACT

The deposition of surface (farinose) flavonoids on aerial parts of some Primula species is a well-documented but poorly understood phenomenon. Here, we show that flavonoid deposition on the leaves and winter buds may contribute strongly to preventing freezing damage in these plants. The ice nucleation temperature of fairy primrose (Primula malacoides) leaves covered with natural flavone was approximately 6 °C lower compared to those that had their flavone artificially removed. Additionally, farinose flavonoids on the leaves reduced subsequent electrolyte leakage (EL) from the cells exposed to freezing temperatures. Interestingly, exogenous application of flavone at 4 mg/g fresh weight to P. malacoides leaves, which had the original flavone mechanically removed, restored freezing tolerance, and diminished EL from the cells to pretreatment values. Our results suggest that farinose flavonoids may function as mediators of freezing tolerance in P. malacoides, and exogenous application of flavone could be used to reduce freezing damage during sudden but predictable frost events in other plant species.


Subject(s)
Adaptation, Physiological , Flavonoids/metabolism , Freezing , Primula/physiology , Adaptation, Physiological/drug effects , Electrolytes/metabolism , Flavonoids/pharmacology , Plant Leaves/drug effects , Plant Leaves/physiology , Primula/drug effects
2.
Physiol Plant ; 120(4): 575-584, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15032819

ABSTRACT

Exudation of organic anions is believed to be a common tolerance mechanism for both aluminium toxicity and phosphorus deficiency. Nevertheless, which of these stresses that actually elicit the exudation of organic anions from rape (Brassica napus L) remains unknown, and the combined effects of Al toxicity and P deficiency on rape have not been reported before. Therefore, in the current study, Brassica napus var. Natane nourin plants grown with or without 0.25 mM P were exposed to 0 or 50 micro M AlCl(3) and several parameters related to the exudation of organic anions from the roots were investigated. Eight days of P deficiency resulted in a significant growth reduction, but P deficiency alone did not induce exudation of organic anions. In contrast, Al strongly induced organic acid exudation, while simultaneously inhibiting root growth. Increased in-vitro activity of citrate synthase (CS, EC 4.1.3.7), malate dehydrogenase (MDH, EC 1.1.1.37) and phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31), together with reduced root respiration, indicated that the Al-induced accumulation and subsequent exudation of citrate and malate were associated with both increased biosynthesis and reduced metabolism of citric and malic acid. Phosphorus-sufficient plants showed more pronounced aluminium-induced accumulation and exudation of organic anions than P-deficient plants. A divided root chamber experiment showed the necessity of direct contact between Al and roots to elicit exudation of organic anions. Prolonged exposure (10 days) to Al resulted in a decrease in the net exudation of citrate and malate, and the rate of decrease was much more rapid in P-deficient plants than in P-sufficient plants. It is concluded that P nutrition affects the level of Al-induced synthesis and exudation of organic anions. However, the mechanism needs further investigation.

SELECTION OF CITATIONS
SEARCH DETAIL
...