Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(18)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37765608

ABSTRACT

A series of polyurethanes (PU) were synthesised via one-step polymerisation without a chain extender, using toluene diisocyanate as well as a variety of soft segments composed of different macrodiols. Poly(D,L-lactide) (PDLLA) and polycaprolactone diol (PCL) were synthesised as a polyester type polyols to obtain soft segments. The process of varying the molar ratio of newly synthesised PDLLA in soft segments has been confirmed as a powerful tool for fine-tuning the final properties of PU. Fourier-transformed infrared spectroscopy was used for evaluation of molecular structures of synthesised PDLLA polyol and final PU. Nuclear magnetic resonance spectrometry was used to confirm the presumed structure of PU. The influence of soft segment composition on polyurethane thermal characteristics was examined using thermogravimetric analysis and differential scanning calorimetry. The composition of soft segments had little impact on the thermal stability of PU materials, which is explained by the comparable structures of both polyester polyols. Wide-angle X-ray scattering was utilised to evaluate the effect of amorphous PDLLA on the degree of crystallinity of PCL in soft PU segments. It was discovered that not only did the PDLLA ratio in the soft segment have a substantial influence on the degree of microphase separation in the soft and hard segments, but it also influenced the crystallisation behaviour of the materials. Furthermore, the restriction of crystallisation of the PCL soft segment has been verified to be dependent on the hard segment concentration and the ratio of PDLLA/PCL polyols. The sample with pure PCL as the polyol component achieved the highest degree of crystallinity (34.8%). The results demonstrated that the composition of soft segments directly affected the properties of obtained polyurethane films. These results can be utilised to easily achieve a desirable set of properties required for application in biomaterials.

2.
Int J Mol Sci ; 23(2)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35055172

ABSTRACT

Reduced graphene oxide (rGO) is one of the graphene derivatives that can be employed to engineer bioactive and/or electroactive scaffolds. However, the influence of its low and especially high concentrations on scaffolds' overall properties and cytotoxicity has yet to be explored. In this study, polyethylene oxide (PEO)-based scaffolds containing from 0.1 to 20 wt% rGO were obtained by electrospinning. Morphological, thermal and electrical properties of the scaffolds were characterized by SEM, Raman spectroscopy, XRD, DSC and electrical measurements. The diameter of the fibers decreased from 0.52 to 0.19 µm as the concentration of rGO increased from 0.1 wt% to 20 wt%. The presence of rGO above the percolation threshold (5.7 wt%) resulted in a significantly reduced electrical resistivity of the scaffolds. XRD and Raman analysis revealed delamination of the graphene layers (interlayer spacing increased from 0.36 nm to 0.40-0.41 nm), and exfoliation of rGO was detected for the samples with an rGO concentration lower than 1 wt%. In addition, an evident trend of increasing cell viability as a function of the rGO concentration was evidenced. The obtained results can serve as further guidance for the judicious selection of the rGO content incorporated into the PEO matrix for constructing electroactive scaffolds.


Subject(s)
Graphite/chemistry , Polyethylene Glycols/chemistry , Tissue Scaffolds/chemistry , Cell Line , Cell Survival , Humans , Spectrum Analysis, Raman , Tissue Engineering , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...