Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Antonie Van Leeuwenhoek ; 117(1): 75, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700529

ABSTRACT

Biogenic nanoparticles (NPs) have emerged as promising therapeutic formulations in effective drug delivery. Despite of various positive attributes, these NPs are often conjugated with various cytotoxic organic fluorophores for bioimaging, thereby reducing its effectiveness as a potential carrier. Herein, we aim to formulate biogenic fluorescent pigmented polyhydroxybutyrate (PHB) NPs from Rhodanobacter sp. strain KT31 (OK001852) for drug delivery. The bacterial strain produced 0.5 g L-1 of polyhydroxyalkanoates (PHAs) from 2.04 g L-1 of dry cell weight (DCW) under optimised conditions via submerged fermentation. Further, structural, thermal, and morphological charactersiation of the extracted PHAs was conducted using advance analytical technologies. IR spectra at 1719.25 cm-1 confirmed presence of C = O functional group PHB. NMR and XRD analysis validated the chemical structure and crystallinity of PHB. TG-DTA revealed Tm (168 °C), Td (292 °C), and Xc (35%) of the PHB. FE-SEM imaging indicated rough surface of the PHB film and the biodegradability was confirmed from open windro composting. WST1 assay showed no significant cell death (> 50%) from 100 to 500 µg/mL, endorsing non-cytotoxic nature of PHB. PHB NPs were uniform, smooth and spherical with size distribution and mean zeta potential 44.73 nm and 0.5 mV. IR and XRD peaks obtained at 1721.75 cm-1 and 48.42 Å denoted C = O and crystalline nature of PHB. Cell proliferation rate of PHB NPs was quite significant at 50 µg/mL, establishing the non-cytotoxic nature of NPs. Further, in vitro efficacy of the PHB NPs needs to be evaluated prior to the biomedical applications.


Subject(s)
Nanoparticles , Polyhydroxyalkanoates , Prohibitins , Nanoparticles/chemistry , Polyhydroxyalkanoates/chemistry , Polyhydroxyalkanoates/metabolism , Drug Delivery Systems , Hydroxybutyrates/chemistry , Hydroxybutyrates/metabolism , Humans , Rhodospirillaceae/metabolism , Rhodospirillaceae/chemistry , Drug Carriers/chemistry
2.
Antonie Van Leeuwenhoek ; 116(6): 521-529, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37027093

ABSTRACT

PHAs (polyhydroxyalkanoates) are the bio-polyester synthesized by different aerobic and anaerobic bacteria as energy storage granule. However, its synthesis by anaerobes or facultative anaerobes is an imperative part of their physiology via assimilating broad range of substrates than aerobes. Thus, three Gram positive facultative anaerobic PHAs producers viz., Enterococcus sp. FM3, Actinomyces sp. CM4 and Bacillus sp. FM5 were selected. Among them, Bacillus sp. FM5 showed higher cell biomass production in MSM (mineral salt medium) comprised of glucose & peptone as carbon & nitrogen source at pH 9, temperature 37 °C, inoculum 10% and incubation period 72 h. Under optimized condition, Bacillus sp. FM5 produced 0.89 and 1.5 g l-1 of PHAs through submerged and solid-state fermentation in anoxic condition. In-silico analysis confirmed the facultative anaerobic PHAs producing bacteria as Bacillus cereus FM5. IR spectra of PHAs illustrated a strong absorption peak at 1718.50 cm-1 representing carbonyl ester (C=O) functional group of PHB (polyhydroxybutyrate), belonging to the family PHAs. It is the first report demonstrating PHAs production by Bacillus cereus FM5 in anoxic condition through different bioprocess technology, which may pave the way in the arena of further biopolymer research.


Subject(s)
Bacillus cereus , Bacillus , Fermentation , Bacteria, Anaerobic
SELECTION OF CITATIONS
SEARCH DETAIL
...