Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(9)2021 May 10.
Article in English | MEDLINE | ID: mdl-34068777

ABSTRACT

As key components of low-cost sensor systems in air quality monitoring, electrochemical gas sensors have recently received a lot of interest but suffer from unit-to-unit variability and different drift components such as aging and concept drift, depending on the calibration approach. Magnitudes of drift can vary across sensors of the same type, and uniform recalibration intervals might lead to insufficient performance for some sensors. This publication evaluates the opportunity to perform predictive maintenance solely by the use of calibration data, thereby detecting the optimal moment for recalibration and improving recalibration intervals and measurement results. Specifically, the idea is to define confidence regions around the calibration data and to monitor the relative position of incoming sensor signals during operation. The emphasis lies on four algorithms from unsupervised anomaly detection-namely, robust covariance, local outlier factor, one-class support vector machine, and isolation forest. Moreover, the behavior of unit-to-unit variability and various drift components on the performance of the algorithms is discussed by analyzing published field experiments and by performing Monte Carlo simulations based on sensing and aging models. Although unsupervised anomaly detection on calibration data can disclose the reliability of measurement results, simulation results suggest that this does not translate to every sensor system due to unfavorable arrangements of baseline drifts paired with sensitivity drift.

2.
Nephrol Dial Transplant ; 36(3): 519-528, 2021 02 20.
Article in English | MEDLINE | ID: mdl-32510143

ABSTRACT

BACKGROUND: The mortality risk remains significant in paediatric and adult patients on chronic haemodialysis (HD) treatment. We aimed to identify factors associated with mortality in patients who started HD as children and continued HD as adults. METHODS: The data originated from a cohort of patients <30 years of age who started HD in childhood (≤19 years) on thrice-weekly HD in outpatient DaVita dialysis centres between 2004 and 2016. Patients with at least 5 years of follow-up since the initiation of HD or death within 5 years were included; 105 variables relating to demographics, HD treatment and laboratory measurements were evaluated as predictors of 5-year mortality utilizing a machine learning approach (random forest). RESULTS: A total of 363 patients were included in the analysis, with 84 patients having started HD at <12 years of age. Low albumin and elevated lactate dehydrogenase (LDH) were the two most important predictors of 5-year mortality. Other predictors included elevated red blood cell distribution width or blood pressure and decreased red blood cell count, haemoglobin, albumin:globulin ratio, ultrafiltration rate, z-score weight for age or single-pool Kt/V (below target). Mortality was predicted with an accuracy of 81%. CONCLUSIONS: Mortality in paediatric and young adult patients on chronic HD is associated with multifactorial markers of nutrition, inflammation, anaemia and dialysis dose. This highlights the importance of multimodal intervention strategies besides adequate HD treatment as determined by Kt/V alone. The association with elevated LDH was not previously reported and may indicate the relevance of blood-membrane interactions, organ malperfusion or haematologic and metabolic changes during maintenance HD in this population.


Subject(s)
Anemia/mortality , Biomarkers/analysis , Inflammation/mortality , Kidney Failure, Chronic/mortality , Machine Learning , Renal Dialysis/mortality , Adolescent , Adult , Anemia/etiology , Anemia/pathology , Body Weight , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Inflammation/etiology , Inflammation/pathology , Kidney Failure, Chronic/pathology , Kidney Failure, Chronic/therapy , Male , Nutritional Status , Prognosis , Renal Dialysis/adverse effects , Retrospective Studies , Survival Rate , Young Adult
3.
Sensors (Basel) ; 20(21)2020 Oct 30.
Article in English | MEDLINE | ID: mdl-33143233

ABSTRACT

This publication revises the deteriorated performance of field calibrated low-cost sensor systems after spatial and temporal relocation, which is often reported for air quality monitoring devices that use machine learning models as part of their software to compensate for cross-sensitivities or interferences with environmental parameters. The cause of this relocation problem and its relationship to the chosen algorithm is elucidated using published experimental data in combination with techniques from data science. Thus, the origin is traced back to insufficient sampling of data that is used for calibration followed by the incorporation of bias into models. Biases often stem from non-representative data and are a common problem in machine learning, and more generally in artificial intelligence, and as such a rising concern. Finally, bias is believed to be partly reducible in this specific application by using balanced data sets generated in well-controlled laboratory experiments, although not trivial due to the need for infrastructure and professional competence.

4.
Anal Bioanal Chem ; 411(19): 4883-4898, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30989265

ABSTRACT

Despite the attractiveness of breath analysis as a non-invasive means to retrieve relevant metabolic information, its introduction into routine clinical practice remains a challenge. Among all the different analytical techniques available to interrogate exhaled breath, secondary electrospray ionization high-resolution mass spectrometry (SESI-HRMS) offers a number of advantages (e.g., real-time, yet wide, metabolome coverage) that makes it ideal for untargeted and targeted studies. However, so far, SESI-HRMS has relied mostly on lab-built prototypes, making it difficult to standardize breath sampling and subsequent analysis, hence preventing further developments such as multi-center clinical studies. To address this issue, we present here a number of new developments. In particular, we have characterized a new SESI interface featuring real-time readout of critical exhalation parameters such as CO2, exhalation flow rate, and exhaled volume. Four healthy subjects provided breath specimens over a period of 1 month to characterize the stability of the SESI-HRMS system. A first assessment of the repeatability of the system using a gas standard revealed a coefficient of variation (CV) of 2.9%. Three classes of aldehydes, namely 4-hydroxy-2-alkenals, 2-alkenals and 4-hydroxy-2,6-alkedienals-hypothesized to be markers of oxidative stress-were chosen as representative metabolites of interest to evaluate the repeatability and reproducibility of this breath analysis analytical platform. Median and interquartile ranges (IQRs) of CVs for CO2, exhalation flow rate, and exhaled volume were 3.2% (1.5%), 3.1% (1.9%), and 5.0% (4.6%), respectively. Despite the high repeatability observed for these parameters, we observed a systematic decay in the signal during repeated measurements for the shorter fatty aldehydes, which eventually reached a steady state after three/four repeated exhalations. In contrast, longer fatty aldehydes showed a steady behavior, independent of the number of repeated exhalation maneuvers. We hypothesize that this highly molecule-specific and individual-independent behavior may be explained by the fact that shorter aldehydes (with higher estimated blood-to-air partition coefficients; approaching 100) mainly get exchanged in the airways of the respiratory system, whereas the longer aldehydes (with smaller estimated blood-to-air partition coefficients; approaching 10) are thought to exchange mostly in the alveoli. Exclusion of the first three exhalations from the analysis led to a median CV (IQR) of 6.7 % (5.5 %) for the said classes of aldehydes. We found that such intra-subject variability is in general much lower than inter-subject variability (median relative differences between subjects 48.2%), suggesting that the system is suitable to capture such differences. No batch effect due to sampling date was observed, overall suggesting that the intra-subject variability measured for these series of aldehydes was biological rather than technical. High correlations found among the series of aldehydes support this notion. Finally, recommendations for breath sampling and analysis for SESI-HRMS users are provided with the aim of harmonizing procedures and improving future inter-laboratory comparisons. Graphical abstract.


Subject(s)
Breath Tests/methods , Spectrometry, Mass, Electrospray Ionization/methods , Adult , Bacteria/isolation & purification , Biomarkers/metabolism , Exhalation , Female , Filtration/instrumentation , Humans , Male , Metabolomics , Oxidative Stress , Reproducibility of Results , Viruses/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...