Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Molecules ; 29(11)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38893490

ABSTRACT

Neurodegenerative diseases (NDs), characterized by progressive degeneration and death of neurons, are strongly related to aging, and the number of people with NDs will continue to rise. Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common NDs, and the current treatments offer no cure. A growing body of research shows that AD and especially PD are intricately related to intestinal health and the gut microbiome and that both diseases can spread retrogradely from the gut to the brain. Zeolites are a large family of minerals built by [SiO4]4- and [AlO4]5- tetrahedrons joined by shared oxygen atoms and forming a three-dimensional microporous structure holding water molecules and ions. The most widespread and used zeolite is clinoptilolite, and additionally, mechanically activated clinoptilolites offer further improved beneficial effects. The current review describes and discusses the numerous positive effects of clinoptilolite and its forms on gut health and the gut microbiome, as well as their detoxifying, antioxidative, immunostimulatory, and anti-inflammatory effects, relevant to the treatment of NDs and especially AD and PD. The direct effects of clinoptilolite and its activated forms on AD pathology in vitro and in vivo are also reviewed, as well as the use of zeolites as biosensors and delivery systems related to PD.


Subject(s)
Gastrointestinal Microbiome , Neurodegenerative Diseases , Zeolites , Zeolites/chemistry , Zeolites/pharmacology , Humans , Neurodegenerative Diseases/drug therapy , Gastrointestinal Microbiome/drug effects , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Parkinson Disease/drug therapy , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/chemistry
2.
Biomolecules ; 14(1)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38275759

ABSTRACT

The existing literature supports the anti-inflammatory, antioxidant, and antiviral capacities of the polyphenol extracts derived from Geranium sanguineum L. These extracts exhibit potential in hindering viral replication by inhibiting enzymes like DNA polymerase and reverse transcriptase. The antiviral properties of G. sanguineum L. seem to complement its immunomodulatory effects, contributing to infection resolution. While preclinical studies on G. sanguineum L. suggest its potential effectiveness against COVID-19, there is still a lack of clinical evidence. Therefore, the polyphenols extracted from this herb warrant further investigation as a potential alternative for preventing and treating COVID-19 infections.


Subject(s)
COVID-19 , Geranium , Virus Diseases , Humans , Polyphenols/pharmacology , Polyphenols/therapeutic use , SARS-CoV-2 , Flavonoids/pharmacology , Phenols/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Virus Diseases/drug therapy
3.
Antioxidants (Basel) ; 12(12)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38136170

ABSTRACT

Alzheimer's disease manifests as a complex pathological condition, with neuroinflammation, oxidative stress and cholinergic dysfunction being a few of the many pathological changes. Due to the complexity of the disease, current therapeutic strategies aim at a multitargeted approach, often relying on a combination of substances with versatile and complementary effects. In the present study, a unique combination of α-lipoic acid, citicoline, extracts of leaves from olive tree and green tea, vitamin D3, selenium and an immune-supporting complex was tested in scopolamine-induced dementia in rats. Using behavioral and biochemical methods, we assessed the effects of the combination on learning and memory, and elucidated the mechanisms of these effects. Our results showed that, compared to its components, the experimental combination was most efficient in improving short- and long-term memory as assessed by the step-through method as well as spatial memory as assessed by T-maze and Barnes maze underlined by decreases in AChE activity (p < 0.05) and LPO (p < 0.001), increases in SOD activity in the cortex (p < 0.05) and increases in catalase (p < 0.05) and GPx (p < 0.01) activities and BDNF (p < 0.001) and pCREB (p < 0.05) levels in the hippocampus. No significant histopathological changes or blood parameter changes were detected, making the experimental combination an effective and safe candidate in a multitargeted treatment of AD.

4.
Genes (Basel) ; 14(12)2023 12 07.
Article in English | MEDLINE | ID: mdl-38137009

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder classically characterized by two neuropathological hallmarks: ß-amyloid plaques and tau tangles in the brain. However, the cellular and molecular mechanisms involved in AD are still elusive, which dampens the possibility of finding new and more effective therapeutic interventions. Current in vitro models are limited in modelling the complexity of AD pathogenesis. In this study, we aimed to characterize the AD expression signature upon a meta-analysis of multiple human datasets, including different cell populations from various brain regions, and compare cell-specific alterations in AD patients and in vitro models to highlight the appropriateness and the limitations of the currently available models in recapitulating AD pathology. The meta-analysis showed consistent enrichment of the Rho GTPases signaling pathway among different cell populations and in the models. The accuracy of in vitro models was higher for neurons and lowest for astrocytes. Our study underscores the particularly low fidelity in modelling down-regulated genes across all cell populations. The top enriched pathways arising from meta-analysis of human data differ from the enriched pathways arising from the overlap. We hope that our data will prove useful in indicating a starting point in the development of future, more complex, 3D in vitro models.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/pathology , Amyloid beta-Peptides/genetics , Neurons/metabolism , Brain/metabolism , Astrocytes/metabolism
5.
Life (Basel) ; 13(10)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37895468

ABSTRACT

The investigation of monoterpenes as natural products has gained significant attention in the search for new pharmacological agents due to their ability to exhibit a wide range in biological activities, including antifungal, antibacterial, antioxidant, anticancer, antispasmodic, hypotensive, and vasodilating properties. In vitro and in vivo studies reveal their antidepressant, anxiolytic, and memory-enhancing effects in experimental dementia and Parkinson's disease. Chemical modification of natural substances by conjugation with various synthetic components is a modern method of obtaining new biologically active compounds. The discovery of new potential drugs among monoterpene derivatives is a progressive avenue within experimental pharmacology, offering a promising approach for the therapy of diverse pathological conditions. Biologically active substances such as monoterpenes, for example, borneol, camphor, geraniol, pinene, and thymol, are used to synthesize compounds with analgesic, anti-inflammatory, anticonvulsive, antidepressant, anti-Alzheimer's, antiparkinsonian, antiviral and antibacterial (antituberculosis) properties. Myrtenal is a perspective monoterpenoid with therapeutic potential in various fields of medicine. Its chemical modifications often lead to new or more pronounced biological effects. As an example, the conjugation of myrtenal with the established pharmacophore adamantane enables the augmentation of several of its pivotal properties. Myrtenal-adamantane derivatives exhibited a variety of beneficial characteristics, such as antimicrobial, antifungal, antiviral, anticancer, anxiolytic, and neuroprotective properties, which are worth examining in more detail and at length.

6.
Molecules ; 28(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37175181

ABSTRACT

Pomegranate (Punica granatum L.) is a rich source of polyphenols, including ellagitannins and ellagic acid. The plant is used in traditional medicine, and its purified components can provide anti-inflammatory and antioxidant activity and support of host defenses during viral infection and recovery from disease. Current data show that pomegranate polyphenol extract and its ellagitannin components and metabolites exert their beneficial effects by controlling immune cell infiltration, regulating the cytokine secretion and reactive oxygen and nitrogen species production, and by modulating the activity of the NFκB pathway. In vitro, pomegranate extracts and ellagitannins interact with and inhibit the infectivity of a range of viruses, including SARS-CoV-2. In silico docking studies show that ellagitannins bind to several SARS-CoV-2 and human proteins, including a number of proteases. This warrants further exploration of polyphenol-viral and polyphenol-host interactions in in vitro and in vivo studies. Pomegranate extracts, ellagitannins and ellagic acid are promising agents to target the SARS-CoV-2 virus and to restrict the host inflammatory response to viral infections, as well as to supplement the depleted host antioxidant levels during the stage of recovery from COVID-19.


Subject(s)
COVID-19 , Lythraceae , Pomegranate , Humans , Polyphenols/pharmacology , Hydrolyzable Tannins/pharmacology , Ellagic Acid/pharmacology , Plant Extracts/pharmacology , SARS-CoV-2
7.
Eur J Med Chem ; 254: 115386, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37094450

ABSTRACT

The modulatory interactions between neurotensin (NT) and the dopaminergic neurotransmitter system in the brain suggest that NT may be associated with the progression of Parkinson's disease (PD). NT exerts its neurophysiological effects by interactions with the human NT receptors type 1 (hNTS1) and 2 (hNTS2). Therefore, both receptor subtypes are promising targets for the development of novel NT-based analogs for the treatment of PD. In this study, we used a virtually guided molecular modeling approach to predict the activity of NT(8-13) analogs by investigating the docking models of ligands designed for binding to the human NTS1 and NTS2 receptors. The importance of the residues at positions 8 and/or 9 for hNTS1 and hNTS2 receptor binding affinity was experimentally confirmed by radioligand binding assays. Further in vitro ADME profiling and in vivo studies revealed that, compared to the parent peptide NT(8-13), compound 10 exhibited improved stability and BBB permeability combined with a significant enhancement of the motor function and memory in a mouse model of PD. The herein reported NTS1/NTS2 dual-specific NT(8-13) analogs represent an attractive tool for the development of therapeutic strategies against PD and potentially other CNS disorders.


Subject(s)
Neurotensin , Parkinson Disease , Animals , Humans , Mice , Dopamine , Ligands , Neurotensin/pharmacology , Neurotensin/metabolism , Parkinson Disease/drug therapy , Protein Binding , Receptors, Neurotensin/metabolism
8.
J Alzheimers Dis ; 92(4): 1289-1302, 2023.
Article in English | MEDLINE | ID: mdl-36872784

ABSTRACT

BACKGROUND: The neurodegenerative process in Alzheimer's disease, one of the most common types of dementia worldwide, mostly affects the cholinergic neurotransmitter system and, to a lesser extent, the monoaminergic one. The antioxidant acetylcholinesterase (AChE) and triple monoamine reuptake inhibitory activity of Sideritis scardica (S. scardica) and other Sideritis species has already been reported. OBJECTIVE: To investigate the effects of S. scardica water extracts on the learning and memory processes, anxiety-like behavior, and locomotor activities in scopolamine (Sco)-induced dementia in mice. METHODS: Male Albino IRC mice were used. The plant extract was administered for 11 consecutive days in the presence or absence of Sco (1 mg/kg, i.p). The behavioural performance of the animals was evaluated by passive avoidance, T-maze, and hole-board tests. The effects of extract on AChE activity, brain noradrenalin (NA), and serotonin (Sero) content, and antioxidant status were also monitored. RESULTS: Our experimental data revealed that the S. scardica water extract caused a reduction in degree of memory impairment and anxiety-like behaviour in mice with scopolamine-induced dementia. The extract did not affect changed by the Sco AChE activity but impact reduced brain NA and Sero levels and demonstrated moderate antioxidant activity. In healthy mice we did not confirm the presence of anxiolytic-like and AChE inhibitory effects of the S. scardica water extract. The extract did not change the control Sero brain levels and reduce those of NA. CONCLUSION: S. scardica water extract demonstrated memory preserving effect in mice with scopolamine-induced dementia and deserve further attention.


Subject(s)
Dementia , Sideritis , Mice , Animals , Scopolamine/toxicity , Antioxidants/adverse effects , Acetylcholinesterase , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Plant Extracts/adverse effects , Water/adverse effects , Dementia/chemically induced , Dementia/drug therapy , Maze Learning
9.
Int J Mol Sci ; 24(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36768185

ABSTRACT

Pomegranate (Punica granatum L.) is a polyphenol-rich food and medicinal plant containing flavonols, anthocyanins, and tannins. Ellagitannins (ETs) are the most abundant polyphenols in pomegranate. A growing body of research shows that polyphenol-rich pomegranate extracts and their metabolites target multiple types of brain cell and support their redox balance, proliferation and survival, as well as cell signaling. Independent studies have demonstrated that the significant neuroprotective effects of ETs are mediated by their antioxidant and anti-inflammatory effects, their chelating properties, by their ability to activate various signaling pathways, as well as the ability to influence mitochondrial damage, thus regulating autophagy, apoptosis and neurotransmitter signaling. The multitude of in vitro and in vivo studies summarized in the present review suggest that pomegranate polyphenols act on both neuronal and glial cells directly, and also affect blood-brain barrier function, restoring redox balance in the blood and brain and increasing blood flow to the brain.


Subject(s)
Lythraceae , Pomegranate , Polyphenols/pharmacology , Polyphenols/therapeutic use , Anthocyanins , Tannins/pharmacology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Hydrolyzable Tannins/pharmacology , Antioxidants/pharmacology , Antioxidants/therapeutic use
10.
Nat Prod Res ; 37(24): 4156-4161, 2023.
Article in English | MEDLINE | ID: mdl-36714926

ABSTRACT

We tested in vivo anti-herpetic effect of castalagin, an ellagitannin compound, extracted from pedunculate oak (Quercus robur). Previous investigations found that castalagin possesses a strong inhibitory effect in vitro against HSV-1/2 equal to acyclovir (ACV). It is also effective against ACV-resistant mutants and shows a synergistic effect with ACV. We study castalagin's activity towards HSV-1 infection in newborn mice. Acute toxicity determination in mice showed LD50 value of 295 mg/kg. Prolonged toxicity was also constructed. Castalagin manifested a marked activity against HSV-1 (LD90/0.02 ml) administered in 7-day course at 0.02 ml s.c. doses of 7.5 or 10 mg/kg (PI 57-58%). ACV course demonstrated a marked activity at 20 mg/kg. The selectivity ratio LD50/ED50 (295/7.5) could be accepted as ≥ 33.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Mice , Animals , Hydrolyzable Tannins/pharmacology , Antiviral Agents/pharmacology , Animals, Newborn , Herpes Simplex/drug therapy , Acyclovir/pharmacology , Herpesvirus 2, Human
11.
Brain Sci ; 12(10)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36291312

ABSTRACT

Although the introduction of HAART has completely changed the natural course of HIV infection, the number of chronic forms of HIV-associated neurocognitive disorder (HAND) has risen. It is estimated that up to half of subjects undergoing HAART therapy exhibit mild cognitive impairments. In the current study, we apply the gene co-expression network modular analysis, a well-established system biology approach, to the gene expression profiles of cases from the National NeuroAIDS Tissue Consortium (NNTC). We observed a negative enrichment for genes associated with the control of immune responses and putatively regulated by the transcription factors IRF8 and SPI1 and by both type I and II interferons. Our study provides evidence of altered immune responses, which are likely associated with the occurrence of HAND in the absence of HIV encephalitis (HIVE).

12.
Molecules ; 27(17)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36080227

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease associated with memory impairment and other central nervous system (CNS) symptoms. Two myrtenal-adamantane conjugates (MACs) showed excellent CNS potential against Alzheimer's models. Adamantane is a common pharmacophore for drug design, and myrtenal (M) demonstrated neuroprotective effects in our previous studies. The aim of this study is to evaluate the MACs' neuroprotective properties in dementia. METHODS: Scopolamine (Scop) was applied intraperitoneally in Wistar rats for 11 days, simultaneously with MACs or M as a referent, respectively. Brain acetylcholine esterase (AChE) activity, noradrenaline and serotonin levels, and oxidative brain status determination followed behavioral tests on memory abilities. Molecular descriptors and docking analyses for AChE activity center affinity were performed. RESULTS: M derivatives have favorable physicochemical parameters to enter the CNS. Both MACs restored memory damaged by Scop, showing significant AChE-inhibitory activity in the cortex, in contrast to M, supported by the modeling analysis. Moderate antioxidant properties were manifested by glutathione elevation and catalase activity modulation. MACs also altered noradrenaline and serotonin content in the hippocampus. CONCLUSION: For the first time, neuroprotective properties of two MACs in a rat dementia model were observed. They were stronger than the natural M effects, which makes the substances promising candidates for AD treatment.


Subject(s)
Adamantane , Alzheimer Disease , Neurodegenerative Diseases , Neuroprotective Agents , Acetylcholinesterase/metabolism , Adamantane/pharmacology , Alzheimer Disease/drug therapy , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Bicyclic Monoterpenes , Maze Learning , Neurodegenerative Diseases/drug therapy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Norepinephrine , Oxidative Stress , Rats , Rats, Wistar , Scopolamine/pharmacology , Serotonin/metabolism
13.
J Alzheimers Dis ; 88(1): 155-175, 2022.
Article in English | MEDLINE | ID: mdl-35599481

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a complex neurodegenerative disease with multifactorial etiology, unsatisfactory treatment, and a necessity for broad-spectrum active substances for cure. The mucus from Helix aspersa snail is a mixture of bioactive molecules with antimicrobial, anti-inflammatory, antioxidant, and anti-apoptotic effects. So far there are no data concerning the capacity of snail extract (SE) to affect neurodegenerative disorders. OBJECTIVE: The effects of SE from Helix aspersa on learning and memory deficits in Alzheimer's type dementia (ATD) induced by scopolamine (Sco) in male Wistar rats were examined and some mechanisms of action underlying these effects were evaluated. METHODS: SE (0.5 mL/100 g) was applied orally through a food tube for 16 consecutive days: 5 days before and 11 days simultaneously with Sco (2 mg/kg, intraperitoneally). At the end of Sco treatment, using behavioral methods, we evaluated memory performance. Additionally, in cortex and hippocampus the acetylcholinesterase (AChE) activity, acetylcholine and monoamines (dopamine, noradrenaline, and serotonin) content, levels of main oxidative stress markers, and expression of brain-derived neurotrophic factor (BDNF) and cAMP response element-binding protein (CREB) were determined. RESULTS: We demonstrated that, according to all behavioral tests used, SE significantly improved the cognitive deficits induced by Sco. Furthermore, SE possessed AChE inhibitory activity, moderate antioxidant properties and the ability to modulate monoamines content in two brain structures. Moreover, multiple SE applications not only restored the depressed by Sco expression of CREB and BDNF, but significantly upregulated it. CONCLUSION: Summarizing results, we conclude that complex mechanisms underlie the beneficial effects of SE on impaired memory in Alzheimer's type dementia.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Acetylcholinesterase/metabolism , Alzheimer Disease/complications , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Antioxidants , Brain-Derived Neurotrophic Factor/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Hippocampus/metabolism , Male , Memory Disorders/metabolism , Models, Theoretical , Neurodegenerative Diseases/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Rats , Rats, Wistar , Scopolamine/metabolism
14.
Antioxidants (Basel) ; 11(2)2022 Feb 12.
Article in English | MEDLINE | ID: mdl-35204256

ABSTRACT

There is growing attention on natural substances capable of stimulating the cholinergic system and of exerting antioxidant effects, as potential therapeutic agents in Alzheimer's disease (AD). The aim of the present study is to evaluate the expected neuroprotective mechanisms of myrtenal (M) in an experimental model of dementia in rats. Dementia was induced in male Wistar rats by scopolamine (Sc) administration (0.1 mg/kg for 8 days and 20.0 mg/kg on day 9). The animals were divided into 5 groups (1) Controls; (2) Sc; (3) Sc + Myrtenal (40 mg/kg), (4) Sc + Galantamine (1 mg/kg); (5) Sc + Lipoic acid (30 mg/kg). Changes in recognition memory and habituation were evaluated via the Novel Object Recognition and Open Field tests. Acetylcholinesterase (AChE) activity, ACh levels, and changes in oxidative status of the brain were measured biochemically. The histological changes in two brain regions-cortex and hippocampus, were evaluated qualitatively and quantitatively. Myrtenal improved recognition memory and habituation, exerted antioxidant effects and significantly increased ACh brain levels. Histologically, the neuroprotective capacity of myrtenal was also confirmed. For the first time, we have demonstrated the neuroprotective potential of myrtenal in an experimental model of dementia. Our study provides proof-of-concept for the testing of myrtenal, in association with standard of care treatments, in patients affected by cognitive decline.

15.
J Mol Neurosci ; 72(5): 1018-1025, 2022 May.
Article in English | MEDLINE | ID: mdl-35174445

ABSTRACT

This study evaluates some of the neuromodulatory mechanisms of the memory loss preventive effect of alpha-lipoic acid (ALA) in a scopolamine (Sco)-induced rat model of Alzheimer's disease (AD) type dementia. Our results confirmed that Sco administration induces significant memory impairment, worsens exploratory behaviour and habituation, increases acetylcholinesterase (AChE) activity, and induces pathological monoamine content changes in the prefrontal cortex and hippocampus. ALA administration largely prevented Sco-induced memory impairment. It also improved exploratory behaviour and preserved habituation, and it decreased AChE activity, reversing it to control group levels, and corrected aberrant monoamine levels in the prefrontal cortex and hippocampus. According to the data available, this is the first time that ALA-induced changes in AChE and monoamine levels in the prefrontal cortex and hippocampus (brain structures related to learning and memory) have been demonstrated in a Sco-induced rat model of AD type dementia.


Subject(s)
Alzheimer Disease , Thioctic Acid , Acetylcholinesterase , Alzheimer Disease/drug therapy , Animals , Memory Disorders/drug therapy , Memory Disorders/etiology , Memory Disorders/prevention & control , Rats , Scopolamine/toxicity , Thioctic Acid/pharmacology , Thioctic Acid/therapeutic use
16.
J Mol Neurosci ; 72(4): 900-909, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35091981

ABSTRACT

The neuroprotective capacity of newly synthesized amantadine derivative tyrosinyl-amantadine (Tyr-Am) with expected antiparkinsonian properties was evaluated in a 6-hydroxydopamine (6-OHDA) model of Parkinson's disease. Male Wistar rats were divided into the following groups: sham-operated (SO), striatal 6-OHDA-lesioned control group, 6-OHDA-lesioned rats pretreated for 6 days with Tyr-Am (16 mg/kg administered intraperitoneally, i.p.), and 6-OHDA-lesioned rats pretreated for 6 days with amantadine (40 mg/kg i.p.), used as a referent. On the first, second and third week post-lesion, the animals were subjected to some behavioral tests (apomorphine-induced rotation, rotarod, and passive avoidance test). The acetylcholinesterase (AChE) activity and key oxidative stress parameters including lipid peroxidation levels (LPO) and superoxide dismutase (SOD) were measured in brain homogenates. The results showed that the neuroprotective effect of Tyr-Am was comparable to that of amantadine, improving neuromuscular coordination and learning and memory performance even at a 2.5-fold lower dose. Tyr-Am demonstrated significant antioxidant properties via decreased LPO levels but had no effect on AChE activity. We can conclude that the newly synthesized amantadine derivative Tyr-Am demonstrated significant antiparkinsonian activity in a 6-OHDA experimental model.


Subject(s)
Parkinson Disease , Acetylcholinesterase , Amantadine/pharmacology , Amantadine/therapeutic use , Animals , Antiparkinson Agents/pharmacology , Antiparkinson Agents/therapeutic use , Disease Models, Animal , Male , Models, Theoretical , Oxidopamine/toxicity , Parkinson Disease/drug therapy , Parkinson Disease/etiology , Rats , Rats, Wistar
17.
J Alzheimers Dis ; 84(2): 671-690, 2021.
Article in English | MEDLINE | ID: mdl-34569967

ABSTRACT

Alzheimer's disease (AD), a progressive neurodegenerative disorder characterized by memory loss and cognitive functions decline, is a leading cause for dementia and currently ranked as the sixth foremost cause of death. As of present, treatment of AD is symptomatic without convincing therapeutic benefits and new, effective, therapeutic agents are pursued. Due to massive loss of cholinergic neurons and decreased acetylcholine levels, cholinesterase inhibitors like galantamine, remain the backbone of pharmacological treatment of the disease. In the present study, using behavioral and biochemical methods, four newly synthesized galantamine derivatives, Gal 34, Gal 43, Gal 44, and Gal 46, were evaluated for a beneficial effect in a scopolamine model of dementia in mice. They were designed to have all the advantages of galantamine and additionally to inhibit ß-secretase and exert favorable effects on plasma lipids. Behavioral tests included step-through inhibitory avoidance, T-maze, and the hole-board test, whereas biochemical evaluations involved assessment of acetylcholinesterase activity, brain monoamines levels, lipid peroxidation, catalase, glutathione peroxidase, and superoxide dismutase activities along with measurement of total glutathione. Results show that Gal 43, Gal 44, and, in particular, Gal 46 are especially effective in improving both short- and long-term memory and in the case of Gal 46 having a significant effect on exploratory activity as well. Although Gal 34 did not show behavioral effects as convincing as those of the other three galantamine derivatives, it demonstrated persuasive antioxidant and restorative capacities, making all four galantamine derivatives promising AD treatment agents and prompting further research, especially that in many of our studies they performed better than galantamine.


Subject(s)
Alzheimer Disease/drug therapy , Cholinergic Antagonists , Cholinesterase Inhibitors/therapeutic use , Galantamine/therapeutic use , Scopolamine , Alzheimer Disease/chemically induced , Animals , Antioxidants , Cholinergic Antagonists/administration & dosage , Cholinergic Antagonists/pharmacology , Cholinesterase Inhibitors/pharmacology , Disease Models, Animal , Galantamine/pharmacology , Male , Memory, Long-Term , Memory, Short-Term , Mice , Scopolamine/administration & dosage , Scopolamine/pharmacology
18.
Antioxidants (Basel) ; 10(8)2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34439542

ABSTRACT

Oxidative stress (OS), resulting from a disrupted balance between reactive oxygen species (ROS) and protective antioxidants, is thought to play an important pathogenetic role in several diseases, including viral infections. Alpha-lipoic acid (LA) is one of the most-studied and used natural compounds, as it is endowed with a well-defined antioxidant and immunomodulatory profile. Owing to these properties, LA has been tested in several chronic immunoinflammatory conditions, such as diabetic neuropathy and metabolic syndrome. In addition, a pharmacological antiviral profile of LA is emerging, that has attracted attention on the possible use of this compound for the cotreatment of several viral infections. Here, we will review the emerging literature on the potential use of LA in viral infections, including COVID-19.

19.
J Alzheimers Dis ; 83(3): 1211-1220, 2021.
Article in English | MEDLINE | ID: mdl-34420968

ABSTRACT

BACKGROUND: Inhibitors of acetylcholinesterase (AChE) are used to treat many disorders, among which are neurodegenerative upsets, like Alzheimer's disease (AD). One of the limited licensed AChE inhibitors (AChEIs) used as drugs is the natural compound galantamine (Gal). OBJECTIVE: As Gal is a toxic compound, here we expose data about its four derivatives in hybrid peptide-norgalantamine molecules, which have shown 100 times lower toxicity. METHODS: Four newly synthesized galantamine derivatives have been involved in docking analysis made by Molegro Virtual Docker. Biological assessments were performed on ICR male mice. The change in short and long-term memory performance was evaluated by passive avoidance test. AChE activity and levels of main oxidative stress parameters: lipid peroxidation, total glutathione (GSH), enzyme activities of catalase (CAT), superoxide dismutase, and glutathione peroxidase were measured in brain homogenates. RESULTS: Our experimental data revealed that the new hybrid molecules did not impair memory performance in healthy mice. Two of the compounds demonstrated better than Gal AChE inhibitory activity in the brain. None of them changed the level of lipid peroxidation products, one of the compounds increased GSH levels, and all of them increased CAT enzyme activity. CONCLUSION: The new galantamine-peptide hybrids demonstrated a potential for inhibition of AChE and antioxidant activity and deserve further attention.


Subject(s)
Alzheimer Disease/drug therapy , Cholinesterase Inhibitors , Galantamine , Memory/drug effects , Mice, Inbred ICR , Animals , Antioxidants/therapeutic use , Brain/metabolism , Catalase/metabolism , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Galantamine/pharmacology , Galantamine/therapeutic use , Glutathione Peroxidase/metabolism , Humans , Lipid Peroxidation , Male , Mice , Oxidative Stress/drug effects , Superoxide Dismutase/metabolism
20.
J Mol Neurosci ; 71(4): 702-712, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33403591

ABSTRACT

Previous evidence has shown a link between neurodegenerative diseases, including Parkinson's disease (PD), and melatonin. The data in the literature about the impact of the hormone under different experimental PD conditions are quite controversial, and its effect on memory impairment in the disease is very poorly explored. The current research was aimed at investigating the role of melatonin pretreatment on memory and motor behavior in healthy rats and those with the partial 6-hydroxydopamine (6-OHDA) model of PD. All rodents were pretreated with melatonin (20 mg/kg, intraperitoneally) for 5 days. At 24 h and 7 days after the first treatment for healthy rats, and at the second and third week post-lesion for those with PD, the animals were tested behaviorally (apomorphine-induced rotations, rotarod, and passive avoidance tests). The neurochemical levels of dopamine (DA), acetylcholine (ACh), noradrenaline (NA), and serotonin (Sero) in the brain were also determined. The results showed that in healthy animals, melatonin pretreatment had amnestic and motor-suppressive effects and did not change the levels of measured brain neurotransmitters. In animals with PD, melatonin pretreatment exerted a neuroprotective effect, manifested as a significantly decreased number of apomorphine-induced rotations, reduced number of falls in the rotarod test, and improved memory performance. The brain DA and ACh concentrations in the same animals were restored to the control levels, and those of NA and Sero did not change. Our results demonstrate a beneficial effect of melatonin on memory and motor disturbance in 6-OHDA-lesioned rats.


Subject(s)
Antiparkinson Agents/therapeutic use , Melatonin/therapeutic use , Memory , Movement , Parkinson Disease/drug therapy , Animals , Antiparkinson Agents/administration & dosage , Antiparkinson Agents/pharmacology , Brain/drug effects , Brain/metabolism , Male , Melatonin/administration & dosage , Melatonin/pharmacology , Neurotransmitter Agents/metabolism , Oxidopamine/toxicity , Parkinson Disease/etiology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...