Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Traffic ; 25(4): e12935, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38629580

ABSTRACT

The protozoan parasites Plasmodium falciparum, Leishmania spp. and Trypanosoma cruzi continue to exert a significant toll on the disease landscape of the human population in sub-Saharan Africa and Latin America. Control measures have helped reduce the burden of their respective diseases-malaria, leishmaniasis and Chagas disease-in endemic regions. However, the need for new drugs, innovative vaccination strategies and molecular markers of disease severity and outcomes has emerged because of developing antimicrobial drug resistance, comparatively inadequate or absent vaccines, and a lack of trustworthy markers of morbid outcomes. Extracellular vesicles (EVs) have been widely reported to play a role in the biology and pathogenicity of P. falciparum, Leishmania spp. and T. cruzi ever since they were discovered. EVs are secreted by a yet to be fully understood mechanism in protozoans into the extracellular milieu and carry a cargo of diverse molecules that reflect the originator cell's metabolic state. Although our understanding of the biogenesis and function of EVs continues to deepen, the question of how EVs in P. falciparum, Leishmania spp. and T. cruzi can serve as targets for a translational agenda into clinical and public health interventions is yet to be fully explored. Here, as a consortium of protozoan researchers, we outline a plan for future researchers and pose three questions to direct an EV's translational agenda in P. falciparum, Leishmania spp. and T. cruzi. We opine that in the long term, executing this blueprint will help bridge the current unmet needs of these medically important protozoan diseases in sub-Saharan Africa and Latin America.


Subject(s)
Chagas Disease , Extracellular Vesicles , Leishmania , Parasites , Trypanosoma cruzi , Animals , Humans , Chagas Disease/epidemiology , Chagas Disease/parasitology
2.
Front Cell Infect Microbiol ; 12: 886728, 2022.
Article in English | MEDLINE | ID: mdl-36061874

ABSTRACT

Plasmodium falciparum malaria is still an important disease in sub-Saharan Africa (sSA). Great strides have been made in its control spear-headed by artemisinin (ART)-based combination therapies (ACTs). However, concerns about the imminent spread of ART-resistant (ARTr) malaria parasites to sSA threaten gains already made. Attempts to mitigate this risk have highlighted the need to discover novel P. falciparum drug targets. Therefore, studies to deepen our understanding of the biology of P. falciparum are needed. The role of extracellular vesicles (EVs) in the biology of malaria parasites is not fully understood. Recently, the ART resistance-associated transcriptional profile has been reported to involve several biological processes connected to vesicular trafficking, proteotoxic stress, erythrocyte remodelling, and mitochondrial metabolism. We explored a role for EVs in developing the P. falciparum ARTr phenotype using bulk RNA sequencing of unsynchronized parasite cultures under untreated, 0.1% dimethyl sulfoxide and 700nM dihydroartemisinin treated conditions for six hours. As pathway and gene ontology analysis is limited in its curated knowledge repertoire on EVs biogenesis in P. falciparum, we used a modular (gene set) analysis approach to explore whether an EVs biogenesis module is associated with the ARTr phenotype in P. falciparum. We first generated well-defined EVs modules of interest and used statistical tools to determine differences in their expression among the parasite and treatment conditions. Then we used gene set enrichment analysis to determine the strength of the association between each EVs module of interest and the ARTr phenotype. This transcriptome-module phenotype association study (TMPAS) represents a well-powered approach to making meaningful discoveries out of bulk gene expression data. We identified four EVs module of interest and report that one module representing gene sets with correlated expression to PF3D7_1441800 - involved with EVs biogenesis in P. falciparum - is associated with the ARTr phenotype (R539T_DHA_treated versus R539T_untreated: normalized enrichment score (NES) = 1.1830174, FDR q-value < 0.25; C580R_DHA_treated versus C580R_untreated: NES = 1.2457103, FDR q-value < 0.25). PF3D7_1441800 has been reported to reduce EVs production when knocked out in P. falciparum. Altogether, our findings suggest a role for EVs in developing ART resistance and warrant further studies interrogating this association.


Subject(s)
Antimalarials , Artemisinins , Biological Phenomena , Extracellular Vesicles , Malaria, Falciparum , Antimalarials/pharmacology , Artemisinins/pharmacology , Humans , Malaria, Falciparum/parasitology , Phenotype , Plasmodium falciparum/genetics , Transcriptome
3.
Trends Parasitol ; 38(8): 614-617, 2022 08.
Article in English | MEDLINE | ID: mdl-35661626

ABSTRACT

Plasmodium falciparum causes malaria, and its resistance to artemisinin (ART) - a drug used for managing malaria - threatens to interfere with the effective control of malaria. ART resistance (ARTr) is driven by increased tolerance to oxidative stress and reduced haemoglobin trafficking to the food vacuole. We discuss how extracellular vesicles (EVs) may play a role in developing ARTr.


Subject(s)
Antimalarials , Artemisinins , Extracellular Vesicles , Malaria, Falciparum , Malaria , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/pharmacology , Artemisinins/therapeutic use , Drug Resistance , Humans , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Plasmodium falciparum
4.
Future Microbiol ; 17: 541-549, 2022 05.
Article in English | MEDLINE | ID: mdl-35332782

ABSTRACT

Chronic hepatitis B (CHB) infection results in multiple clinical phenotypes of varying severity. One of the critical gaps in CHB management is the lack of a genetic-based tool to aid existing hepatocellular carcinoma and cirrhosis risk stratification models for patients with active CHB. Such individual predictive models for CHB are plagued by an inherent limitation of discriminatory power that clearly indicates the need for their improvement. In this article, we highlight genetic association studies in CHB that identified HLA and cytokine genetic susceptibility loci to CHB. We advance the position that translating CHB genetic susceptibility loci into polygenic risk scores will be a welcome addendum to the current arsenal of CHB outcome predictive models. We conclude with comments on hurdles that future research efforts should address within the research enclave of CHB and advocate for increased genetic data representation from sub-Saharan Africa.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B, Chronic , Hepatitis B , Liver Neoplasms , Carcinoma, Hepatocellular/genetics , Genetic Predisposition to Disease , Hepatitis B virus/genetics , Hepatitis B, Chronic/genetics , Humans , Liver Cirrhosis , Liver Neoplasms/genetics , Risk Factors
5.
Traffic ; 22(6): 194-200, 2021 06.
Article in English | MEDLINE | ID: mdl-33860593

ABSTRACT

Plasmodium falciparum malaria remains a disease of significant public health impact today. With the risk of emerging artemisinin resistance stalling malaria control efforts, the need to deepen our understanding of the parasite's biology is dire. Extracellular vesicles (EVs) are vital to the biology of P. falciparum and play a role in the pathogenesis of malaria. Recent studies have also shown that EVs may play a role in the development of artemisinin resistance in P. falciparum. Here, we highlight evidence on EVs in P. falciparum biology and malaria pathogenesis and argue that there is sufficient ground to propose a role for EVs in the development of P. falciparum artemisinin resistance. We suggest that EVs are actively secreted functional organelles that contribute to cellular homeostasis in P. falciparum-infected red blood cells under artemisinin pressure. Further exploration of this hypothesized EVs-based molecular mechanism of artemisinin resistance will aid the discovery of novel antimalarial therapies.


Subject(s)
Antimalarials , Artemisinins , Extracellular Vesicles , Malaria, Falciparum , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/pharmacology , Artemisinins/therapeutic use , Humans , Malaria, Falciparum/drug therapy , Plasmodium falciparum
6.
Evol Bioinform Online ; 17: 1176934321999640, 2021.
Article in English | MEDLINE | ID: mdl-33746510

ABSTRACT

Sub-Saharan Africa is courting the risk of artemisinin resistance (ARTr) emerging in Plasmodium falciparum malaria parasites. Current molecular surveillance efforts for ARTr have been built on the utility of P. falciparum kelch13 (pfk13) validated molecular markers. However, whether these molecular markers will serve the purpose of early detection of artemisinin-resistant parasites in Ghana is hinged on a pfk13 dependent evolution. Here, we tested the hypothesis that the background pfk13 genome may be present before the pfk13 ARTr-conferring variant(s) is selected and that signatures of balancing selection on these genomic loci may serve as an early warning signal of ARTr. We analyzed 12 198 single nucleotide polymorphisms (SNPs) in Ghanaian clinical isolates in the Pf3K MalariaGEN dataset that passed a stringent filtering regimen. We identified signatures of balancing selection in 2 genes (phosphatidylinositol 4-kinase and chloroquine resistance transporter) previously reported as background loci for ARTr. These genes showed statistically significant and high positive values for Tajima's D, Fu and Li's F, and Fu and Li's D. This indicates that the biodiversity required to establish a pfk13 background genome may have been primed in clinical isolates of P. falciparum from Ghana as of 2010. Despite the absence of ARTr in Ghana to date, our finding supports the current use of pfk13 for molecular surveillance of ARTr in Ghana and highlights the potential utility of monitoring malaria parasite populations for balancing selection in ARTr precursor background genes as early warning molecular signatures for the emergence of ARTr.

7.
Exp Biol Med (Maywood) ; 246(9): 1060-1068, 2021 05.
Article in English | MEDLINE | ID: mdl-33596698

ABSTRACT

Human immunodeficiency virus 1 (HIV-1) infection remains a public health concern globally. Although great strides in the management of HIV-1 have been achieved, current highly active antiretroviral therapy is limited by multidrug resistance, prolonged use-related effects, and inability to purge the HIV-1 latent pool. Even though novel therapeutic options with HIV-1 broadly neutralizing antibodies (bNAbs) are being explored, the scalability of bNAbs is limited by economic cost of production and obligatory requirement for parenteral administration. However, these limitations can be addressed by antibody mimetics/peptidomimetics of HIV-1 bNAbs. In this review we discuss the limitations of HIV-1 bNAbs as HIV-1 entry inhibitors and explore the potential therapeutic use of antibody mimetics/peptidomimetics of HIV-1 entry inhibitors as an alternative for HIV-1 bNAbs. We highlight the reduced cost of production, high specificity, and oral bioavailability of peptidomimetics compared to bNAbs to demonstrate their suitability as candidates for novel HIV-1 therapy and conclude with some perspectives on future research toward HIV-1 novel drug discovery.


Subject(s)
Anti-HIV Agents/pharmacology , HIV Infections/drug therapy , Peptidomimetics/pharmacology , Virus Internalization/drug effects , Broadly Neutralizing Antibodies , Drug Discovery , HIV Antibodies , HIV-1 , Humans
8.
Exp Biol Med (Maywood) ; 245(9): 815-822, 2020 05.
Article in English | MEDLINE | ID: mdl-32349537

ABSTRACT

IMPACT STATEMENT: Genetic association studies can determine the effect size of gene loci on disease outcomes. In the arena of HBV infections, HLA alleles that associate with HBV outcomes can be used in clinical management decisions. This potential translational utility can shape the future management of HBV infections by identifying at-risk individuals and tailoring medical interventions accordingly. This precision medicine motif is currently only a nascent idea. However, it has stakes that may well override the current "wait and see" approach of clinical management of HBV infections. Here, we have identified HLA alleles associated with HBV outcome in a Ghanaian cohort. Our findings support the motif that HLA alleles associate with HBV outcome along geo-ethnic lines. This buttresses the need for further population pivoted studies. In the long term, our findings add to efforts towards the development of an HLA molecular-based algorithm for predicting HBV infection outcomes.


Subject(s)
Genetic Predisposition to Disease/genetics , HLA Antigens/genetics , Hepatitis B, Chronic/genetics , Adult , Alleles , Female , Genetic Variation , Genotype , Ghana , HLA Antigens/immunology , Hepatitis B virus , Hepatitis B, Chronic/immunology , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...