Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
PeerJ ; 7: e7756, 2019.
Article in English | MEDLINE | ID: mdl-31695964

ABSTRACT

The medicinal orchid genus Dendrobium belonging to the Orchidaceae family is a huge genus comprising about 800-1,500 species. To better illustrate the species status in the genus Dendrobium, a comparative analysis of 33 available chloroplast genomes retrieved from NCBI RefSeq database was compared with that of the first complete chloroplast genome of D. nobile from north-east India based on next-generation sequencing methods (Illumina HiSeq 2500-PE150). Our results provide comparative chloroplast genomic information for taxonomical identification, alignment-free phylogenomic inference and other statistical features of Dendrobium plastomes, which can also provide valuable information on their mutational events and sequence divergence.

2.
Phytomedicine ; 55: 58-69, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30668444

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Nardostachys jatamansi (D. Don) DC., 'Spikenard' or 'Jatamansi', a highly valued, aromatic herb from alpine Himalayas has a long history of use as ethnomedicine and dietary supplements in Ayurveda, Unani and Chinese system of medicine since Vedic ages (1000-800 BC). In Ayurveda and traditional system of medicine, the species is used as stimulant, sedative, brain tonic or mind rejuvenator, antidiabetic, cardio tonic, and in the treatment of various neurological disorders such as insomnia, epilepsy, hysteria, anxiety and depression. It is considered as Sattvic herb in Ayurveda and is now commercially marketed either as single or poly-herbal formulations by many companies in national and international markets. AIM OF THE STUDY: The species has become threatened in its natural habitats due to over exploitation and illegal trade of its rhizomes for drug preparation in herbal and pharmaceutical industries. Considering the increasing demand and tremendous medicinal importance of this threatened plant species, a detailed study was undertaken to evaluate its antioxidant potential, secondary metabolite profiling, cytotoxicity, anti-inflammatory potential and in vitro enzyme inhibitory activities on key enzymes linked to hyperglycemia, hypertension and cognitive disorders in different plant parts of wild and in vitro-raised plants with respect to different solvent systems for its sustainable utilization. MATERIALS AND METHODS: Anti-cholinesterase activity of leaves and rhizome of wild and cultured plant extracts was investigated against both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes. In vitro anti-hyperglycemic (α-amylase and PTP1B), anti-hypertensive (angiotensin-converting enzyme), anti-tyrosinase and anti-inflammatory potential (5-lipoxygenase and hyaluronidase) of different plant parts of wild and in vitro-raised plants with respect to different solvent systems were also evaluated. In vitro cytotoxic effect of rootstock extracts of wild and in vitro-derived plants were against cancer (HCT-116, MCF-7 and OE33) and two normal (HEK and MEF) cell lines. Secondary metabolite profiling of rhizome segments of wild and in vitro-derived plants was carried out by quantitative gas chromatography-mass spectrometry (GC-MS). RESULTS: In vitro-raised plantlets showed comparative higher yield of various secondary metabolites with a significantly high antioxidant activity as compared to the wild plants. Methanolic rootstock extracts of both wild and in vitro-derived plants of N. jatamansi exhibited significant AChE (IC50 36.46 ±â€¯2.1 and 31.18 ±â€¯2.6 µg/ml, respectively) and BuChE (IC50 64.6 ±â€¯3.5 and 60.12 ±â€¯3.6 µg/ml, respectively) inhibitory potential as compared to standard inhibitor galanthamine (IC50 0.94 ±â€¯0.03 and 4.45 ±â€¯0.5 µg/ml). Methanolic rootstock extract of in vitro-derived plants showed significant α-amylase (IC50 90.69 ±â€¯2.1 µg/ml), PTP1B (IC50 24.56 ±â€¯0.8 µg/ml), angiotensin-converting enzyme (IC50 42.5 ±â€¯3.6 µg/ml) and tyrosinase (IC50 168.12 ±â€¯3.6 µg/ml) inhibitory potential as compared to standard acarbose (IC50 52.36 ±â€¯3.1 µg/ml), ursolic acid (IC50 5.24 ±â€¯0.8 µg/ml), captopril (IC50 32.36 ±â€¯2.5 µg/ml) and kojic acid (IC50 = 54.44 ±â€¯2.3 µg/ml). Both the methanolic rootstock and leaf extracts of tissue culture-derived plants exhibited promising anti-5-LOX and anti-hyaluronidase activities against the known inhibitor of 5-LOX and hyaluronidase. Furthermore, methanolic rootstock extracts of both wild and in vitro-derived plants exhibited promising cytotoxic effects to HCT-116, MCF-7 and OE33 cell lines as compared to the normal HEK and MEF after 12 h of treatment. Secondary metabolite profiling of wild and in vitro-derived plants by quantitative GC-MS analysis revealed the presence of different classes of terpenoids and phenolic acids might be responsible for its effective biological activities. CONCLUSION: In vitro-derived plants revealed a substantial anti-cholinesterases, anti-hyperglycemic anti-inflammatory, anti-hypertensive and anti-tyrosinase potential with higher yield of various bioactive metabolites and significantly higher antioxidant activity which substantially explain medicinal importance of N. jatamansi in traditional medicine, used for centuries in different Ayurvedic formulations. The present findings suggest that cultured plants could be a promising alternative for the production of bioactive metabolites with comparative biological activities to the wild plants.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/pharmacology , Enzyme Inhibitors/pharmacology , Nardostachys/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antihypertensive Agents/chemistry , Antihypertensive Agents/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antioxidants/chemistry , Cell Line, Tumor , Cognition Disorders/drug therapy , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/enzymology , Enzyme Inhibitors/chemistry , Humans , Hyperglycemia/drug therapy , Hyperglycemia/enzymology , Hypertension/drug therapy , Hypertension/enzymology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Mice , Nardostachys/metabolism , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Plants, Medicinal/chemistry , Rhizome/cytology , Secondary Metabolism
3.
Physiol Mol Biol Plants ; 23(4): 955-968, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29158642

ABSTRACT

Malaxis wallichii (Lindl.) Deb, a small, perennial, monopodial, terrestrial orchid, is endemic to tropical Himalayas at an altitude of 1200-2000 m asl. The pseudobulbs are important ingredients of century old drug 'Ashtavarga' and a polyherbal energetic tonic 'Chyavanprash'. An efficient genetically stable in vitro propagation protocol using transverse thin cell layer culture system was established for M. wallichii. In the present report, meta-topolin alone proved to be three times more beneficial compared to other routinely used cytokinins in inducing highest number of shoot buds, plant height and growth of regenerated shoots. The highest regeneration frequency (89%) along with maximum number of adventitious shoots per explant (22.5 ± 0.6) was observed in MS medium supplemented with 1.0 mg/l meta-topolin and 0.5 mg/l α-naphthalene acetic acid. Highest rooting frequency with highest number of roots (8.66 ± 0.3) was achieved in half-strength MS medium fortified with 1.0 mg/l indole acetic acid. Clonal stability of in vitro-derived plantlets was evaluated and compared to donor plant using intron splice junction (ISJ) markers and flow cytometry. ISJ markers revealed 4.76% clonal variability indicating high degree of genetic stability amongst the in vitro-derived regenerants. The nuclear DNA content of M. wallichii (2n) was found to be 2C = 2.760 ± 0.02 pg and therefore, 1349.64 Mbp (1C). Flow cytometry analysis of actively growing young and mature leaves from donor as well as in vitro-derived plantlets revealed presence of three peaks corresponding to 2C, 4C and 8C, while 2C was the most abundant. In the present investigation, there was no significant difference in the 2C DNA content between the mother and in vitro-derived plants; however, the frequency of endopolyploid cells varied in young and adult plants. An increased H2O2 content as well as lipid peroxidation activities were observed during early stages of acclimatization which declined afterwards. The enhanced activities of antioxidant enzymes like superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase in acclimatized plantlets as compared to in vitro-grown ones revealed their active involvement in growth and development against oxidative stress under external adverse environment.

4.
J Photochem Photobiol B ; 173: 686-695, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28743100

ABSTRACT

Malaxis acuminata D. Don., a small, terrestrial orchid, is endemic to tropical Himalayas at an altitude of 1200-2000m asl. The dried pseudobulbs are important ingredients of century old ayurvedic drug 'Ashtavarga' and a polyherbal immune-booster nutraceutical 'Chyavanprash', known to restore vigour, vitality and youthfulness. Considering tremendous medicinal importance of this threatened orchid species, a detailed study was undertaken for the first time to address its antioxidant potential, secondary metabolite contents and biological activities against skin-aging related enzymes (anti-collagenase, anti-elastase, anti-tyrosinase and xanthine oxidase) and anti-inflammatory activity (5-lipoxygenase and hyaluronidase) in different plant parts of wild and in vitro-derived plants of M. acuminata. Methanolic leaf and stem extracts were further evaluated for in vitro photoprotective activity against UV-B and UV-A radiations. Furthermore, secondary metabolite profiling of various plant parts was carried out by Gas Chromatography Mass Spectrometry (GC-MS). A significantly higher antioxidant potential (DPPH, metal chelating and ABTS•+) with a comparative higher yield of secondary metabolites was observed in in vitro-derived plantlets as compared to the wild plants. Among various solvent systems used, methanolic leaf and stem extracts showed promising inhibitory activity against major skin aging-related enzymes and anti-inflammatory potential. Methanolic leaf and stem extracts of both wild and in vitro-derived plants showed promising photoprotective activity against UV-B and UV-A radiations in vitro with comparatively higher sun protection factor (SPF). Furthermore, GC-MS analysis of methanolic extracts of leaves and stems of wild as well as in vitro-derived plantlets revealed presence of many bioactive metabolites such as, dietary fatty acids, α-hydroxy acids, phenolic acids, sterols, amino acids, sugars and glycosides which substantially explain the use of M. acuminata as one of the potential rejuvenator and anti-aging ingredient in many Ayurvedic formulations.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Orchidaceae/chemistry , Plant Extracts/chemistry , Skin Aging/drug effects , Alkaloids/analysis , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Antioxidants/chemistry , Collagenases/chemistry , Collagenases/metabolism , Dietary Supplements , Flavonoids/analysis , Gas Chromatography-Mass Spectrometry , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Orchidaceae/metabolism , Pancreatic Elastase/antagonists & inhibitors , Pancreatic Elastase/metabolism , Plant Extracts/analysis , Plant Leaves/chemistry , Plant Leaves/metabolism , Polyphenols/analysis , Skin Aging/radiation effects , Sunscreening Agents/chemistry , Sunscreening Agents/pharmacology , Ultraviolet Rays , Xanthine Oxidase/antagonists & inhibitors , Xanthine Oxidase/metabolism
5.
PLoS Curr ; 92017 May 19.
Article in English | MEDLINE | ID: mdl-28736679

ABSTRACT

Orchidaceae constitutes one of the largest families of angiosperms. Owing to the significance of orchids in plant biology, market needs and current sustainable technology levels, basic research on the biology of orchids and their applications in the orchid industry is increasing. Although chloroplast (cp) genomes continue to be evolutionarily informative, there is very limited information available on orchid chloroplast genomes in public repositories. Here, we report the complete cp genome sequence of Dendrobium nobile from Northeast India (Orchidaceae, Asparagales), bearing the GenBank accession number KX377961, which will provide valuable information for future research on orchid genomics and evolution, as well as the medicinal value of orchids. Phylogenetic analyses using Bayesian methods recovered a monophyletic grouping of all Dendrobium species (D. nobile, D. huoshanense, D. officinale, D. pendulum, D. strongylanthum and D. chrysotoxum). The relationships recovered among the representative orchid species from the four subfamilies, i.e., Cypripedioideae, Epidendroideae, Orchidoideae and Vanilloideae, were consistent within the family Orchidaceae.

6.
3 Biotech ; 7(2): 124, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28567635

ABSTRACT

An efficient in vitro regeneration protocol has been developed from shoot tips of Drosera burmannii Vahl., a carnivorous plant of north-east India. Various plant growth regulators were used to study their efficacy in the induction of multiple shoots and roots. Of the various treatments, the maximum number of shoots (28.8 ± 1.5) and roots (9.7 ± 0.6) was observed in one-fourth strength standard medium (MS with 50 mg/l citric acid and 10 mg/l ascorbic acid) supplemented with 4 mg/l 6-benzylaminopurine (BAP) and 4 mg/l α-naphthalene acetic acid (NAA) followed by 26.8 ± 1.4 shoots in one-fourth strength SM fortified with 4 mg/l kinetin (KN) and 4 mg/l NAA. The well-developed plantlets with shoots and roots were potted in small plastic glasses filled with a mixture of sand and farmyard manure (3:1); these plantlets when transferred to a glasshouse for hardening and acclimatization showed 90% survival.

7.
J Bioinform Comput Biol ; 14(6): 1660001, 2016 12.
Article in English | MEDLINE | ID: mdl-28024450

ABSTRACT

Intercontinental dislocations between tropical regions harboring two-thirds of the flowering plants have always drawn attention from taxonomists and biogeographers. One such family belonging to angiosperms is Orchidaceae with an herbaceous habit and high species diversity in the tropics. Here, we investigate the evolutionary and biogeographical history of the genus Cymbidium, which represents a monophyletic subfamily (Epidendroideae) of the orchids and comprises 50 odd species that are distinctly distributed in tropical to temperate regions. Much is not known about correlations among the level of CAM activity (one of the photosynthetic pathways often regarded as an adaptation to water stress in land plants), habitat, life forms, and phylogenetic relationships of orchids from an evolutionary perspective. A relatively well-resolved and highly supported phylogeny for Cymbidium orchids is reconstructed based on sequence analysis of ITS2 and matK regions from the chloroplast DNA available in public repositories viz. GenBank at NCBI. This study examines a genus level analysis by integrating different molecular matrices to existing fossil data on orchids in a molecular Bayesian relaxed clock employed in BEAST and assessed divergence times for the genus Cymbidium with a focus on evolutionary history of photosynthetic characters. Our study has enabled age estimations (45Ma) as well as ancestral area reconstruction for the genus Cymbidium using BEAST by addition of previously analyzed two internal calibration points.


Subject(s)
Fossils , Orchidaceae/physiology , Phylogeny , Bayes Theorem , Calibration , DNA, Ribosomal Spacer/genetics , Endoribonucleases/genetics , Genetic Markers , Models, Biological , Nucleotidyltransferases/genetics , Orchidaceae/genetics , Phylogeography , Time Factors
8.
Genome Announc ; 4(5)2016 Oct 06.
Article in English | MEDLINE | ID: mdl-27795255

ABSTRACT

The orchid species Dendrobium nobile belonging to the family Orchidaceae and genus Dendrobium (a vast genus that encompasses nearly 1,200 species) has an herbal medicinal history of about 2000 years in east and south Asian countries. Here, we report the complete chloroplast genome sequence of D. nobile from northeastern India for the first time.

9.
Meta Gene ; 7: 56-63, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26862481

ABSTRACT

Sequences of the Internal Transcribed Spacer (ITS1-5.8S-ITS2) of nuclear ribosomal DNAs were explored to study the genetic diversity and molecular evolution of Naga King Chili. Our study indicated the occurrence of nucleotide polymorphism and haplotypic diversity in the ITS regions. The present study demonstrated that the variability of ITS1 with respect to nucleotide diversity and sequence polymorphism exceeded that of ITS2. Sequence analysis of 5.8S gene revealed a much conserved region in all the accessions of Naga King Chili. However, strong phylogenetic information of this species is the distinct 13 bp deletion in the 5.8S gene which discriminated Naga King Chili from the rest of the Capsicum sp. Neutrality test results implied a neutral variation, and population seems to be evolving at drift-mutation equilibrium and free from directed selection pressure. Furthermore, mismatch analysis showed multimodal curve indicating a demographic equilibrium. Phylogenetic relationships revealed by Median Joining Network (MJN) analysis denoted a clear discrimination of Naga King Chili from its closest sister species (Capsicum chinense and Capsicum frutescens). The absence of star-like network of haplotypes suggested an ancient population expansion of this chili.

10.
Bioprocess Biosyst Eng ; 39(1): 205-10, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26578343

ABSTRACT

Cell suspension cultures were initiated from hypocotyl derived callus to induce capsaicin biosynthesis in suspension cultures of Naga King Chili (Capsicum chinense Jacq.). Efficient capsaicin production with high growth index (GI) was obtained by exposing cells to salicylic acid (SA) and calcium channel modulators in suspension cultures. The time course of capsaicin formation is related to the cell growth profile in a batch culture. Cells cultivated in the standard medium (SM) initially showed low level of capsaicin yield during active growth. When the cells approached stationary phase, cell growth and cell viability decreased whereas capsaicin production increased continuously. In the fed-batch cultures, the highest capsaicin yield (567.4 ± 8.1 µgg(1) fresh weight) (f.wt) was obtained by feeding the cells with 1 mM SA. However, SA feeding during cultivation repressed the cell growth. Enhanced cell growth (3.1 ± 0.1 GI/culture) and capsaicin yield (534 ± 7.8 µgg(-1)f.wt) were obtained when the cells were fed with calcium ionophore A23187 (0.5 mM) on day 25 as compared to the control. Addition of the calcium channel blocker verapamil hydrochloride (100 mM) inhibited cell growth and capsaicin production in Naga King Chili suspension cell cultures.


Subject(s)
Capsaicin/metabolism , Capsicum , Cell Culture Techniques/methods , Plant Cells/metabolism , Capsicum/cytology , Capsicum/metabolism
11.
Phytochemistry ; 117: 306-316, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26125940

ABSTRACT

Dendrobium nobile is an important medicinal orchid having profound importance in traditional herbal drug preparations and pharmacopeias worldwide. Due to various anthropogenic pressures the natural populations of this important orchid species are presently facing threats of extinction. In the present study, genetic and chemical diversity existing amongst 6 natural populations of D. nobile were assessed using molecular markers, and the influence of genetic factors on its phytochemical activity especially antioxidant potential was determined. Molecular fingerprinting of the orchid taxa was performed using ISSR and DAMD markers along with the estimation of total phenolics, flavonoids and alkaloid contents. Antioxidant activity was also measured using DPPH and FRAP assays which cumulatively revealed a significant level of variability across the sampled populations. The representatives from Sikkim in Northeast India revealed higher phytochemical activity whereas those from Mizoram showed lesser activity. Analysis of molecular variance (AMOVA) revealed that variation amongst the populations was significantly higher than within the populations. The data generated by UPGMA and Bayesian analytical models were compared in order to estimate the genetic relationships amongst the D. nobile germplasm sampled from different geographical areas of Northeast India. Interestingly, identical grouping patterns were exhibited by both the approaches. The results of the present study detected a high degree of existing genetic and phytochemical variation amongst the populations in relation to bioclimatic and geographic locations of populations. Our results strongly establish that the cumulative marker approach could be the best suited for assessing the genetic relationships with high accuracy amongst distinct D. nobile accessions.


Subject(s)
Dendrobium/genetics , Dendrobium/metabolism , Microsatellite Repeats , Minisatellite Repeats , Alkaloids/analysis , Antioxidants/metabolism , Antioxidants/pharmacology , Bayes Theorem , DNA Barcoding, Taxonomic , Dendrobium/classification , Endangered Species , Flavonoids/analysis , Genetic Markers , Genetic Variation , Genetics, Population , India , Models, Theoretical , Plants, Medicinal/genetics , Secondary Metabolism
12.
Protoplasma ; 252(5): 1305-12, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25616932

ABSTRACT

Rapid clonal propagation of selected genotypes has been one of the most extensively exploited approaches of biotechnology. However, inclusion of somaclonal variations in tissue-culture-derived plants results in the production of undesirable plant off-types which limits its applications in tissue culture industry. Therefore, the most critical concern has been the maintenance of genetic uniformity of micropropagated plants. Assessment of genetic fidelity in tissue-culture-raised plants of three consecutive regenerations of Nepenthes khasiana has been successfully carried out using chromosome counts and heterochromatin distribution pattern wherein changes in the number of chromosomes and the distribution of AT and GC base pairs were recorded. The cells studied in the plantlets of the first regeneration (23.33 %) showed deviant number of chromosome which was increased to 33.33 % and 40 % in the plantlets of the second and the third regenerations, respectively. Also, 4',6-diamidino-2-phenylindole (DAPI)(+) and chromomycin A3 (CMA)(+) binding sites, on an average of 5.74 ± 0.47 and 5.00 ± 0.30, were observed in the plantlets of the first regeneration. Subsequently, DAPI(+) binding sites were increased to 6.61 ± 0.39 and 6.74 ± 0.57 in the plantlets of the second and the third regenerations, respectively, with a corresponding decrease in the CMA(+) binding sites (4.63 ± 0.45 and 4.16 ± 0.47 CMA(+) sites in the plantlets of the second and the third regenerations, respectively). The study reveals an increase in cytological variations in the morphologically similar micropropagated plants of N. khasiana with the subsequent regenerations which further necessitate the determination of genetic integrity of micropropagated plants.


Subject(s)
Heterochromatin/genetics , Magnoliopsida/genetics , Cell Nucleus/metabolism , Chromosomes, Plant/genetics , Cytogenetic Analysis , Interphase , Magnoliopsida/cytology
13.
J Toxicol ; 2014: 910497, 2014.
Article in English | MEDLINE | ID: mdl-25505908

ABSTRACT

Different dilutions, that is, 25, 50, 75, and 100%, of tannery effluent (TE) were chosen for the present study to assess the phytotoxic effects on Vigna mungo L. For amelioration purposes, different levels and combinations of iron and zinc were supplied to the plants along with 50% TE that is chosen on the basis of prior test under Petri dish culture. Cytotoxic and biochemical analysis and plant tolerance index (PTI) of plant were observed. Mitotic index deceased with increase in effluent concentration whereas abnormality % was increased. The pigments (chlorophyll a, total, and carotenoids) were decreased with increasing treatment levels of TE at both growth stages. However, carotenoid content increased significantly at all dilution levels of TE after first growth stage. Chlorophyll b was increased significantly after 35 days of growth but decreased after 70 days. The protein contents were also significantly decreased with increase in all TE treatments and increased significantly in zinc recovery treatments. Activities of catalase and peroxidase enzymes were significantly affected and increased significantly with effluent treatments. PTI showed an enhanced tolerance capacity of plant with treatment of iron and zinc. A negative correlation was found (r = -0.97) between plant height and different dilutions of effluent whereas it was positively correlated (r = 0.95) with iron and zinc treatments. The study represents the ameliorative effect of iron and zinc for phytotoxic damage in V. mungo caused by tannery effluent.

14.
Biomed Res Int ; 2014: 934182, 2014.
Article in English | MEDLINE | ID: mdl-24734252

ABSTRACT

Catharanthus roseus (L.) G. Don, a medicinal plant, has a very important place in the traditional as well as modern pharmaceutical industry. Two common varieties of this plant rosea and alba are named so because of pink and white coloured flowers, respectively. This plant comprises of about 130 terpenoid indole alkaloids and two of them, vincristine and vinblastine, are common anticancer drugs. The effect of chromium (Cr) on enzymatic and non-enzymatic antioxidant components and on secondary metabolites vincristine and vinblastine was studied under pot culture conditions of both varieties of C. roseus. Antioxidant responses of these varieties were analyzed under 0, 10, 50, and 100 µM chromium (Cr) level in order to investigate the plant's protective mechanisms against Cr induced oxidative stress. The results indicated that Cr affects all the studied parameters and decreases growth performance. However, vincristine and vinblastine contents were increased under Cr stress. Results are quite encouraging, as this plant shows good antioxidant potential and increased the level of active constituents under Cr stress.


Subject(s)
Antioxidants/chemistry , Catharanthus/metabolism , Chromium/chemistry , Plant Extracts/chemistry , Vinblastine/chemistry , Vincristine/chemistry , Antineoplastic Agents/chemistry , Carotenoids/chemistry , Chlorophyll/chemistry , Chromatography, High Pressure Liquid , Cysteine/chemistry , Dose-Response Relationship, Drug , Humans , Lipid Peroxidation , Oxidative Stress , Permeability , Proline/chemistry , Sulfhydryl Compounds/chemistry
15.
Gene ; 538(1): 23-9, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24440289

ABSTRACT

The genetic fidelity of in vitro-raised plants of three successive regenerations of Nepenthes khasiana Hook. f. was assessed using three different single primer amplification reaction (SPAR) methods, viz., random amplified polymorphic DNA (RAPD), inter-simple sequence repeat (ISSR) and direct amplification of minisatellite DNA region (DAMD) markers. Out of 80 RAPD primers screened, 14 primers reflected a genetic variation of 4.1% in the first regeneration which was increased to 9.4% in the third regeneration. In the case of ISSR, out of 36 primers screened for assessment of genetic homogeneity of the regenerated plantlets, 12 primers showed an increase of genetic variation from 4.3% to 10% from the first to the third regenerations. In DAMD profiling, 15 primers were used for the evaluation of genetic fidelity where 8.47% of polymorphism was observed in the first regeneration which was increased to 13.33% in the third regeneration. The cumulative analysis reflected a genetic variation of 5.65% in the first regeneration which increased subsequently to 7.77% in the second regeneration and 10.87% in the third regeneration. The present study demonstrates SPAR technique to be an efficient tool for the assessment of clonal fidelity of in vitro-raised plants.


Subject(s)
Genes, Plant , Magnoliopsida/genetics , Polymorphism, Genetic , Genetic Heterogeneity , Genetic Markers
16.
Bioprocess Biosyst Eng ; 37(6): 1055-63, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24141419

ABSTRACT

Manipulation of culture strategies was adopted to study the influence of nutrient stress, pH stress and precursor feeding on the biosynthesis of capsaicin in suspension and immobilized cell cultures of C. chinense. Cells cultured in the absence of one of the four nutrients (ammonium and potassium nitrate for nitrate and potassium stress, potassium dihydrogen orthophosphate for phosphorus stress, and sucrose for sugar stress) influenced the accumulation of capsaicin. Among the stress factors studied, nitrate stress showed maximal capsaicin production on day 20 (505.9 ± 2.8 µg g(-1) f.wt) in immobilized cell, whereas in suspension cultures the maximum accumulation (345.5 ± 2.9 µg g(-1) f.wt) was obtained on day 10. Different pH affected capsaicin accumulation; enhanced accumulation of capsaicin (261.6 ± 3.4 µg g(-1) f.wt) was observed in suspension cultures at pH 6 on day 15, whereas in case of immobilized cultures the highest capsaicin content (433.3 ± 3.3 µg g(-1) f.wt) was obtained at pH 5 on day 10. Addition of capsaicin precursors and intermediates significantly enhanced the biosynthesis of capsaicin, incorporation of vanillin at 100 µM in both suspension and immobilized cell cultures resulted in maximum capsaicin content with 499.1 ± 5.5 µg g(-1) f.wt on day 20 and 1,315.3 ± 10 µg g(-1) f.wt on day 10, respectively. Among the different culture strategies adopted to enhance capsaicin biosynthesis in cell cultures of C. chinense, cells fed with vanillin resulted in the maximum capsaicin accumulation. The rate of capsaicin production was significantly higher in immobilized cells as compared to freely suspended cells.


Subject(s)
Capsaicin/metabolism , Capsicum/metabolism , Plant Cells/metabolism , Capsicum/cytology , Cells, Immobilized/cytology , Cells, Immobilized/metabolism
17.
Meta Gene ; 2: 489-504, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25606433

ABSTRACT

An efficient genetically stable regeneration protocol with increased phytochemical production has been established for Dendrobium nobile, a highly prized orchid for its economic and medicinal importance. Protocorm like bodies (PLBs) were induced from the pseudostem segments using thidiazuron (TDZ; 1.5 mg/l), by-passing the conventional auxin-cytokinin complement approach for plant regeneration. Although, PLB induction was observed at higher concentrations of TDZ, plantlet regeneration from those PLBs was affected adversely. The best rooting (5.41 roots/shoot) was achieved in MS medium with 1.5 mg/l TDZ and 0.25% activated charcoal. Plantlets were successfully transferred to a greenhouse with a survival rate of 84.3%, exhibiting normal development. Genetic stability of the regenerated plants was investigated using randomly amplified polymorphic DNA (RAPD) and start codon targeted (SCoT) polymorphism markers which detected 97% of genetic fidelity among the regenerants. The PIC values of RAPD and SCoT primers were recorded to be 0.92 and 0.76 and their Rp values ranged between 3.66 and 10, and 4 and 12 respectively. The amplification products of the regenerated plants showed similar banding patterns to that of the mother plant thus demonstrating the homogeneity of the micropropagated plants. A comparative phytochemical analysis among the mother and the micropropagated plants showed a higher yield of secondary metabolites. The regeneration protocol developed in this study provides a basis for ex-situ germplasm conservation and also harnesses the various secondary metabolite compounds of medicinal importance present in D. nobile.

18.
Gene ; 529(1): 21-6, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23939470

ABSTRACT

Genetic variability in the wild genotypes of Dendrobium nobile Lindl. collected from different parts of Northeast India, was analyzed using a Start Codon Targeted (SCoT) marker system. A total of sixty individuals comprising of six natural populations were investigated for the existing natural genetic diversity. One hundred and thirty two (132) amplicons were produced by SCoT marker generating 96.21% polymorphism. The PIC value of the SCoT marker system was 0.78 and the Rp values of the primers ranged between 4.43 and 7.50. The percentage of polymorphic loci (Pp) ranging from 25% to 56.82%, Nei's gene diversity (h) from 0.08 to 0.15 with mean Nei's gene diversity of 0.28, and Shannon's information index (I) values ranging from 0.13 to 0.24 with an average value of 0.43 were recorded. The gene flow value (0.37) and the diversity among populations (0.57) demonstrated higher genetic variation among the populations. Analysis of molecular variance (AMOVA) showed 43.37% of variation within the populations, whereas 56.63% variation was recorded among the populations. Cluster analysis also reveals high genetic variation among the genotypes. Present investigation suggests the effectiveness of SCoT marker system to estimate the genetic diversity of D. nobile and that it can be seen as a preliminary point for future research on the population and evolutionary genetics of this endangered orchid species of medicinal importance.


Subject(s)
Codon, Initiator/genetics , Dendrobium/genetics , Endangered Species , Genetic Markers , Genetic Variation , Cluster Analysis , Codon, Initiator/metabolism , DNA Primers , Dendrobium/classification , Gene Flow , Genotype , India , Polymorphism, Genetic
19.
J Basic Microbiol ; 53(12): 1025-33, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23553724

ABSTRACT

Establishment of symbiotic association at the appropriate developmental stage helped maintain continued growth which is vital for the long-term ex vitro survival of the orchid. In the present study, symbiotic association was carried out using different developmental stages of Dendrobium chrysanthum and pathogenic Rhizoctonia isolates (obtained from orchids and non-orchid hosts) in different culture media. Isolate 2162 supported highest symbiotic germination on OMA-S (oat meal agar medium without nutrients + sucrose), whereas, stable symbiotic association with plantlets was obtained with isolate 4634 on OMA-NC (oat meal agar medium + cellulose). Isolate Dc-2S2 obtained from the host plant did not promote seed germination nor did it form association with protocorms or plantlets. This study, for the first time identifies a combination of compatible fungal isolate, suitable culture medium, and appropriate developmental stage at which symbiotic association in vitro can be deemed successful for the medicinally important orchid, D. chrysanthum.


Subject(s)
Dendrobium/microbiology , Fungi/physiology , Rhizoctonia/physiology , Culture Media , Dendrobium/growth & development , Plant Roots/growth & development , Plant Roots/microbiology , Seeds/growth & development , Seeds/microbiology , Symbiosis
20.
Gene ; 519(1): 91-7, 2013 Apr 25.
Article in English | MEDLINE | ID: mdl-23396183

ABSTRACT

Molecular genetic fingerprints of seven populations of Vanda coerulea comprising of thirty-two genotypes from Northeast India were developed using PCR based markers. Genetic variability in the wild genotypes of V. coerulea was analyzed using two different single primer amplification reactions (SPAR) methods, viz., random amplified polymorphic DNA (RAPD) and inter-simple sequence repeats (ISSR). A total of 32 genotypes were used to investigate the existing natural genetic diversity at intra-specific level. Two hundred and twenty six (226) amplification products were scored by RAPD and ISSR, both of which collectively showed 58.88% polymorphism with a mean intra-population genetic diversity (Hpop) of 0.119. However, their level of diversity at inter- and intra-population levels was significant, with the percentage of polymorphic loci (Pp) ranging from 17.70% to 45.13%, Shannon's information index (I) from 0.105 to 0.268 and Nei's gene diversity (h) from 0.072 to 0.185 with mean Nei's gene diversity 0.174 and the overall estimate of gene flow being (Nm) 1.165. Analysis of molecular variance (AMOVA) showed 96.07% of variation at intra-population level, whereas 3.93% variation was recorded at inter-population level. Only one major cluster was detected by cluster analysis using the unweighted pair-group method with arithmetic average (UPGMA). Present investigation suggests the efficiency of SPAR methods to estimate the genetic diversity of V. coerulea and can be seen as a starting point for future research on the population and evolutionary genetics of this species.


Subject(s)
Endangered Species , Gene Flow , Genetic Variation , Nucleic Acid Amplification Techniques/methods , Orchidaceae/genetics , Cluster Analysis , DNA Primers , Electrophoresis, Agar Gel , Genetic Loci , Genotype , India , Microsatellite Repeats , Orchidaceae/classification , Phylogeny , Phylogeography , Polymorphism, Genetic , Random Amplified Polymorphic DNA Technique/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...