Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Sci Rep ; 14(1): 10253, 2024 05 04.
Article in English | MEDLINE | ID: mdl-38704431

ABSTRACT

The tegument protein pp150 of Human Cytomegalovirus (HCMV) is known to be essential for the final stages of virus maturation and mediates its functions by interacting with capsid proteins. Our laboratory has previously identified the critical regions in pp150 important for pp150-capsid interactions and designed peptides similar in sequence to these regions, with a goal to competitively inhibit capsid maturation. Treatment with a specific peptide (PepCR2 or P10) targeted to pp150 conserved region 2 led to a significant reduction in murine CMV (MCMV) growth in cell culture, paving the way for in vivo testing in a mouse model of CMV infection. However, the general pharmacokinetic parameters of peptides, including rapid degradation and limited tissue and cell membrane permeability, pose a challenge to their successful use in vivo. Therefore, we designed a biopolymer-stabilized elastin-like polypeptide (ELP) fusion construct (ELP-P10) to enhance the bioavailability of P10. Antiviral efficacy and cytotoxic effects of ELP-P10 were studied in cell culture, and pharmacokinetics, biodistribution, and antiviral efficacy were studied in a mouse model of CMV infection. ELP-P10 maintained significant antiviral activity in cell culture, and this conjugation significantly enhanced P10 bioavailability in mouse tissues. The fluorescently labeled ELP-P10 accumulated to higher levels in mouse liver and kidneys as compared to the unconjugated P10. Moreover, viral titers from vital organs of MCMV-infected mice indicated a significant reduction of virus load upon ELP-P10 treatment. Therefore, ELP-P10 has the potential to be developed into an effective antiviral against CMV infection.


Subject(s)
Antiviral Agents , Cytomegalovirus Infections , Elastin , Muromegalovirus , Peptides , Phosphoproteins , Viral Matrix Proteins , Animals , Elastin/chemistry , Elastin/metabolism , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/virology , Mice , Antiviral Agents/pharmacology , Antiviral Agents/pharmacokinetics , Antiviral Agents/chemistry , Peptides/pharmacology , Peptides/chemistry , Muromegalovirus/drug effects , Humans , Capsid Proteins/metabolism , Capsid Proteins/chemistry , Cytomegalovirus/drug effects , Capsid/metabolism , Capsid/drug effects , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/pharmacokinetics , Disease Models, Animal , Elastin-Like Polypeptides
2.
Int J Biol Macromol ; 246: 125714, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37423440

ABSTRACT

Severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) and influenza viruses have spread around the world at an unprecedented rate. Despite multiple vaccines, new variants of SARS-CoV-2 and influenza have caused a remarkable level of pathogenesis. The development of effective antiviral drugs to treat SARS-CoV-2 and influenza remains a high priority. Inhibiting viral cell surface attachment represents an early and efficient means to block virus infection. Sialyl glycoconjugates, on the surface of human cell membranes, play an important role as host cell receptors for influenza A virus and 9-O-acetyl-sialylated glycoconjugates are receptors for MERS, HKU1 and bovine coronaviruses. We designed and synthesized multivalent 6'-sialyllactose-counjugated polyamidoamine dendrimers through click chemistry at room temperature concisely. These dendrimer derivatives have good solubility and stability in aqueous solutions. SPR, a real-time analysis quantitative method for of biomolecular interactions, was used to study the binding affinities of our dendrimer derivatives by utilizing only 200 micrograms of each dendrimer. Three SARS-CoV-2 S-protein receptor binding domain (wild type and two Omicron mutants) bound to multivalent 9-O-acetyl-6'-sialyllactose-counjugated and 6'-sialyllactose-counjugated dendrimers bound to a single H3N2 influenza A virus's HA protein (A/Hong Kong/1/1968), the SPR study results suggest their potential anti-viral activities.


Subject(s)
COVID-19 , Dendrimers , Influenza, Human , Animals , Cattle , Humans , Spike Glycoprotein, Coronavirus/chemistry , SARS-CoV-2/metabolism , Dendrimers/pharmacology , Dendrimers/metabolism , Influenza, Human/drug therapy , Hemagglutinins , Influenza A Virus, H3N2 Subtype/metabolism , Antiviral Agents/chemistry , Protein Binding
3.
J Nat Prod ; 86(6): 1463-1475, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37306476

ABSTRACT

In this work, we isolated two new sulfated glycans from the body wall of the sea cucumber Thyonella gemmata: one fucosylated chondroitin sulfate (TgFucCS) (17.5 ± 3.5% kDa) and one sulfated fucan (TgSF) (383.3 ± 2.1% kDa). NMR results showed the TgFucCS backbone composed of [→3)-ß-N-acetylgalactosamine-(1→4)-ß-glucuronic acid-(1→] with 70% 4-sulfated and 30% 4,6-disulfated GalNAc units and one-third of the GlcA units decorated at the C3 position with branching α-fucose (Fuc) units either 4-sulfated (65%) or 2,4-disulfated (35%) and the TgSF structure composed of a tetrasaccharide repeating unit of [→3)-α-Fuc2,4S-(1→2)-α-Fuc4S-(1→3)-α-Fuc2S-(1→3)-α-Fuc2S-(1→]n. Inhibitory properties of TgFucCS and TgSF were investigated using SARS-CoV-2 pseudovirus coated with S-proteins of the wild-type (Wuhan-Hu-1) or the delta (B.1.617.2) strains and in four different anticoagulant assays, comparatively with unfractionated heparin. Molecular binding to coagulation (co)-factors and S-proteins was investigated by competitive surface plasmon resonance spectroscopy. Among the two sulfated glycans tested, TgSF showed significant anti-SARS-CoV-2 activity against both strains together with low anticoagulant properties, indicating a good candidate for future studies in drug development.


Subject(s)
COVID-19 , Sea Cucumbers , Animals , Anticoagulants/pharmacology , Sea Cucumbers/chemistry , Sulfates/chemistry , Heparin , SARS-CoV-2 , Polysaccharides/chemistry
4.
PLoS One ; 18(5): e0285539, 2023.
Article in English | MEDLINE | ID: mdl-37167245

ABSTRACT

Fucosylated chondroitin sulfate (FucCS) is a unique glycosaminoglycan found primarily in sea cucumbers. This marine sulfated glycan is composed of a chondroitin sulfate backbone decorated with fucosyl branches attached to the glucuronic acid. FucCS exhibits potential biological actions including inhibition of blood clotting and severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection. These biological effects have been attributed to certain structural features, including molecular weight (MW), and/or those related to fucosylation, such as degrees of fucosyl branches, sulfation patterns and contents. In a previous work, we were able to generate oligosaccharides of the FucCS from Pentacta pygmaea (PpFucCS) with reduced anticoagulant effect but still retaining significant anti-SARS-CoV-2 activity against the delta strain. In this work, we extended our study to the FucCS extracted from the species Holothuria floridana (HfFucCS). The oligosaccharides were prepared by free-radical depolymerization of the HfFucCS via copper-based Fenton reaction. One-dimensional 1H nuclear magnetic resonance spectra were employed in structural analysis. Activated partial thromboplastin time and assays using protease (factors Xa and IIa) and serine protease inhibitors (antithrombin, and heparin cofactor II) in the presence of the sulfated carbohydrates were used to monitor anticoagulation. Anti-SARS-CoV-2 effects were measured using the concentration-response inhibitory curves of HEK-293T-human angiotensin-converting enzyme-2 cells infected with a baculovirus pseudotyped SARS-CoV-2 wild-type and delta variant spike (S)-proteins. Furthermore, the cytotoxicity of native HfFucCS and its oligosaccharides was also assessed. Like for PpFucCS, we were able to generate a HfFucCS oligosaccharide fraction devoid of high anticoagulant effect but still retaining considerable anti-SARS-CoV-2 actions against both variants. However, compared to the oligosaccharide fraction derived from PpFucCS, the average MW of the shortest active HfFucCS oligosaccharide fraction was significantly lower. This finding suggests that the specific structural feature in HfFucCS, the branching 3,4-di-sulfated fucoses together with the backbone 4,6-di-sulfated N-acetylgalactosamines, is relevant for the anti-SARS-CoV-2 activity of FucCS molecules.


Subject(s)
COVID-19 , Holothuria , Sea Cucumbers , Animals , Humans , Chondroitin Sulfates/pharmacology , Chondroitin Sulfates/chemistry , SARS-CoV-2 , Anticoagulants/pharmacology , Anticoagulants/chemistry , Oligosaccharides/pharmacology , Oligosaccharides/chemistry
5.
Viruses ; 15(4)2023 03 28.
Article in English | MEDLINE | ID: mdl-37112839

ABSTRACT

Many viruses attach to host cells by first interacting with cell surface proteoglycans containing heparan sulfate (HS) glycosaminoglycan chains and then by engaging with specific receptor, resulting in virus entry. In this project, HS-virus interactions were targeted by a new fucosylated chondroitin sulfate from the sea cucumber Pentacta pygmaea (PpFucCS) in order to block human cytomegalovirus (HCMV) entry into cells. Human foreskin fibroblasts were infected with HCMV in the presence of PpFucCS and its low molecular weight (LMW) fractions and the virus yield at five days post-infection was assessed. The virus attachment and entry into the cells were visualized by labeling the purified virus particles with a self-quenching fluorophore octadecyl rhodamine B (R18). The native PpFucCS exhibited potent inhibitory activity against HCMV specifically blocking virus entry into the cell and the inhibitory activities of the LMW PpFucCS derivatives were proportional to their chain lengths. PpFucCS and the derived oligosaccharides did not exhibit any significant cytotoxicity; moreover, they protected the infected cells from virus-induced lytic cell death. In conclusion, PpFucCS inhibits the entry of HCMV into cells and the high MW of this carbohydrate is a key structural element to achieve the maximal anti-viral effect. This new marine sulfated glycan can be developed into a potential prophylactic and therapeutic antiviral agent against HCMV infection.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Humans , Cytomegalovirus/physiology , Molecular Weight , Virus Replication , Heparitin Sulfate/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Virus Internalization
6.
Cell Death Discov ; 9(1): 111, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37012234

ABSTRACT

Cytomegalovirus (CMV) is a widely prevalent herpesvirus that reaches seroprevalence rates of up to 95% in several parts of the world. The majority of CMV infections are asymptomatic, albeit they have severe detrimental effects on immunocompromised individuals. Congenital CMV infection is a leading cause of developmental abnormalities in the USA. CMV infection is a significant risk factor for cardiovascular diseases in individuals of all ages. Like other herpesviruses, CMV regulates cell death for its replication and establishes and maintains a latent state in the host. Although CMV-mediated regulation of cell death is reported by several groups, it is unknown how CMV infection affects necroptosis and apoptosis in cardiac cells. Here, we infected primary cardiomyocytes, the contractile cells in the heart, and primary cardiac fibroblasts with wild-type and cell-death suppressor deficient mutant CMVs to determine how CMV regulates necroptosis and apoptosis in cardiac cells. Our results reveal that CMV infection prevents TNF-induced necroptosis in cardiomyocytes; however, the opposite phenotype is observed in cardiac fibroblasts. CMV infection also suppresses inflammation, reactive oxygen species (ROS) generation, and apoptosis in cardiomyocytes. Furthermore, CMV infection improves mitochondrial biogenesis and viability in cardiomyocytes. We conclude that CMV infection differentially affects the viability of cardiac cells.

7.
Int J Biol Macromol ; 238: 124168, 2023 May 31.
Article in English | MEDLINE | ID: mdl-36963552

ABSTRACT

The structure of the sulfated galactan from the red alga Botryocladia occidentalis (BoSG) was originally proposed as a simple repeating disaccharide of alternating 4-linked α-galactopyranose (Galp) and 3-linked ß-Galp units with variable sulfation pattern. Abundance was estimated only for the α-Galp units: one-third of 2,3-disulfation and one-third of 2-monosulfation. Here, we isolated again the same BoSG fractions from the anion-exchange chromatography, obtaining the same NMR profile of the first report. More careful NMR analysis led us to revise the structure. A more complex sulfation pattern was noted along with the occurrence of 4-linked α-3,6-anhydro-Galp (AnGalp) units. Interestingly, the more sulfated BoSG fraction showed slightly reduced in vitro anti-SARS-CoV-2 activities against both wild-type and delta variants, and significantly reduced anticoagulant activity. The BoSG fractions showed no cytotoxic effects. The reduction in both bioactivities is attributed to the presence of the AnGalp unit. Docking scores from computational simulations using BoSG disaccharide constructs on wild-type and delta S-proteins, and binding analysis through competitive SPR assays using blood (co)-factors (antithrombin, heparin cofactor II and thrombin) and four S-proteins (wild-type, delta, gamma, and omicron) strongly support the conclusion about the deleterious impact of the AnGalp unit.


Subject(s)
COVID-19 , Rhodophyta , Humans , Galactans/pharmacology , Galactans/chemistry , Sulfates/chemistry , SARS-CoV-2 , Anticoagulants/pharmacology , Anticoagulants/chemistry , Rhodophyta/chemistry , Disaccharides/pharmacology
8.
Glycobiology ; 33(1): 75-85, 2023 01 08.
Article in English | MEDLINE | ID: mdl-36136750

ABSTRACT

Fucosylated chondroitin sulfate (FucCS) is a unique marine glycosaminoglycan that exhibits diverse biological functions, including antiviral and anticoagulant activity. In previous work, the FucCS derived from Pentacta pygmaea (PpFucCS) showed moderate anticoagulant effect but high inhibitory activity against the Wuhan strain of severe acute respiratory syndrome coronavirus (SARS-CoV-2). In this study, we perform free-radical depolymerization of PpFucCS by the copper-based Fenton method to generate low molecular weight (MW) oligosaccharides. PpFucCS oligosaccharides were structurally analyzed by 1H nuclear magnetic resonance spectroscopy and were used to conduct structure-activity relationship studies regarding their effects against SARS-CoV-2 and clotting. Anticoagulant properties were measured by activated partial thromboplastin time, protease (factors Xa and IIa) inhibition by serine protease inhibitors (antithrombin [AT] and heparin cofactor II [HCII]), and competitive surface plasmon resonance (SPR) assay using AT, HCII, and IIa. Anti-SARS-CoV-2 properties were measured by the concentration-response inhibitory curves of HEK-293T-human angiotensin-converting enzyme-2 cells infected with a baculovirus pseudotyped SARS-CoV-2 Delta variant spike (S)-protein and competitive SPR assays using multiple S-proteins (Wuhan, N501Y [Alpha], K417T/E484K/N501Y [Gamma], L542R [Delta], and Omicron [BA.2 subvariant]). Cytotoxicity of native PpFucCS and oligosaccharides was also assessed. The PpFucCS-derived oligosaccharide fraction of the highest MW showed great anti-SARS-CoV-2 Delta activity and reduced anticoagulant properties. Results have indicated no cytotoxicity and MW dependency on both anti-SARS-CoV-2 and anticoagulant effects of PpFucCS, as both actions were reduced accordingly to the MW decrease of PpFucCS. Our results demonstrate that the high-MW structures of PpFucCS is a key structural element to achieve the maximal anti-SARS-CoV-2 and anticoagulant effects.


Subject(s)
COVID-19 , Sea Cucumbers , Animals , Humans , Anticoagulants/pharmacology , Molecular Weight , Thrombin , SARS-CoV-2 , Chondroitin Sulfates/pharmacology , Chondroitin Sulfates/chemistry , Sea Cucumbers/chemistry , Antithrombin III , Oligosaccharides/chemistry
9.
ACS Appl Bio Mater ; 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36053723

ABSTRACT

The emergence of Alpha, Beta, Gamma, Delta, and Omicron variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for several million deaths up to now. Because of the huge amount of vaccine escape mutations in the spike (S) protein for different variants, the design of material for combating SARS-CoV-2 is very important for our society. Herein, we report on the design of a human angiotensin converting enzyme 2 (ACE2) peptide-conjugated plasmonic-magnetic heterostructure, which has the capability for magnetic separation, identification via surface enhanced Raman spectroscopy (SERS), and inhibition of different variant SARS-CoV-2 infections. In this work, plasmonic-magnetic heterostructures were developed using the initial synthesis of polyethylenimine (PEI)-coated Fe3O4-based magnetic nanoparticles, and then gold nanoparticles (GNPs) were grown onto the surface of the magnetic nanoparticles. Experimental binding data between ACE2-conjugated plasmonic-magnetic heterostructures and spike-receptor-binding domain (RBD) show that the Omicron variant has maximum binding ability, and it follows Alpha < Beta < Gamma < Delta < Omicron. Our finding shows that, due to the high magnetic moment (specific magnetization 40 emu/g), bioconjugated heterostructures are capable of effective magnetic separation of pseudotyped SARS-CoV-2 bearing the Delta variant spike from an infected artificial nasal mucus fluid sample using a simple bar magnet. Experimental data show that due to the formation of huge "hot spots" in the presence of SARS-CoV-2, Raman intensity for the 4-aminothiolphenol (4-ATP) Raman reporter was enhanced sharply, which has been used for the identification of separated virus. Theoretical calculations using finite-difference time-domain (FDTD) simulation indicate that, due to the "hot spots" formation, a six orders of magnitude Raman enhancement can be observed. A concentration-dependent inhibition efficiency investigation using a HEK293T-human cell line indicates that ACE2 peptide-conjugated plasmonic-magnetic heterostructures have the capability of complete inhibition of entry of different variants and original SARS-CoV-2 pseudovirions into host cells.

10.
ACS Appl Mater Interfaces ; 14(38): 43732-43740, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36121103

ABSTRACT

The ongoing COVID-19 pandemic has increased the use of single-use medical fabrics such as surgical masks, respirators, and other personal protective equipment (PPE), which have faced worldwide supply chain shortages. Reusable PPE is desirable in light of such shortages; however, the use of reusable PPE is largely restricted by the difficulty of rapid sterilization. In this work, we demonstrate successful bacterial and viral inactivation through remote and rapid radio frequency (RF) heating of conductive textiles. The RF heating behavior of conductive polymer-coated fabrics was measured for several different fabrics and coating compositions. Next, to determine the robustness and repeatability of this heating response, we investigated the textile's RF heating response after multiple detergent washes. Finally, we show a rapid reduction of bacteria and virus by RF heating our conductive fabric. 99.9% of methicillin-resistant Staphylococcus aureus (MRSA) was removed from our conductive fabrics after only 10 min of RF heating; human cytomegalovirus (HCMV) was completely sterilized after 5 min of RF heating. These results demonstrate that RF heating conductive polymer-coated fabrics offer new opportunities for applications of conductive textiles in the medical and/or electronic fields.


Subject(s)
COVID-19 , Methicillin-Resistant Staphylococcus aureus , Bacteria , COVID-19/prevention & control , Detergents , Heating , Humans , Pandemics , Polymers , Textiles/microbiology , Virus Inactivation
11.
Glycobiology ; 32(10): 849-854, 2022 09 19.
Article in English | MEDLINE | ID: mdl-35788318

ABSTRACT

The Coronavirus disease pandemic has steered the global therapeutic research efforts toward the discovery of potential anti-severe acute respiratory syndrome coronavirus (SARS-CoV-2) molecules. The role of the viral spike glycoprotein (S-protein) has been clearly established in SARS-CoV-2 infection through its capacity to bind to the host cell surface heparan sulfate proteoglycan (HSPG) and angiotensin-converting enzyme-2. The antiviral strategies targeting these 2 virus receptors are currently under intense investigation. However, the rapid evolution of the SARS-CoV-2 genome has resulted in numerous mutations in the S-protein posing a significant challenge for the design of S-protein-targeted inhibitors. As an example, the 2 key mutations in the S-protein receptor-binding domain (RBD), L452R, and T478K in the SARS-CoV-2 Delta variant (B.1.617.2) confer tighter binding to the host epithelial cells. Marine sulfated glycans (MSGs) demonstrate excellent inhibitory activity against SARS-CoV-2 via competitive disruption of the S-protein RBD-HSPG interactions and thus have the potential to be developed into effective prophylactic and therapeutic molecules. In this study, 7 different MSGs were evaluated for their anti-SARS-CoV-2 activity in a virus entry assay utilizing a SARS-CoV-2 pseudovirus coated with S-protein of the wild-type (Wuhan-Hu-1) or the Delta (B.1.617.2) strain. Although all tested MSGs showed strong inhibitory activity against both strains, no correlations between MSG structural features and virus inhibition could be drawn. Nevertheless, the current study provides evidence for the maintenance of inhibitory activity of MSGs against evolving SARS-CoV-2 strains.


Subject(s)
Antiviral Agents , Polysaccharides , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Sulfates , Virus Internalization , Antiviral Agents/pharmacology , Heparan Sulfate Proteoglycans/metabolism , Humans , Polysaccharides/pharmacology , Receptors, Virus/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Sulfates/pharmacology , Virus Internalization/drug effects
12.
Front Microbiol ; 13: 834927, 2022.
Article in English | MEDLINE | ID: mdl-35450284

ABSTRACT

Many viruses exploit thin projections of filopodia for cell entry and cell-to-cell spread. Using primary cultures of human iris stromal (HIS) cells derived from human eye donors, we report a significant increase in filopodia formation during human cytomegalovirus (HCMV) infection. Using confocal microscopy, we observed a large number of virions being frequently associated along the filopodia prior to cell infection. Depolymerization of actin filaments resulted in a significant inhibition of HCMV entry into HIS cell. Our results further revealed that the transient expression of HCMV envelope glycoprotein B (gB) triggers the induction of the filopodial system. Since gB is known to bind the diverse chains of heparan sulfate (HS), a comparative study was performed to evaluate the gB-mediated filopodial induction in cells expressing either wild-type HS and/or 3-O sulfated HS (3-OS HS). We found that cells co-expressing HCMV gB together with the 3-O sulfotranseferase-3 (3-OST-3) enzyme had a much higher and robust filopodia induction compared to cells co-expressing gB with wild-type HS. The above results were further verified by pre-treating HIS cells with anti-3-OS HS (G2) peptide and/or heparinase-I before challenging with HCMV infection, which resulted in a significant loss in the filopodial counts as well as decreased viral infectivity. Taken together, our findings highlight that HCMV entry into HIS cells actively modulates the actin cytoskeleton via coordinated actions possibly between gB and the 3-OS HS receptor to influence viral infectivity.

13.
ACS Omega ; 7(9): 8150-8157, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35252734

ABSTRACT

The emergence of double mutation delta (B.1.617.2) variants has dropped vaccine effectiveness against SARS-CoV-2 infection. Although COVID-19 is responsible for more than 5.4 M deaths till now, more than 40% of infected individuals are asymptomatic carriers as the immune system of the human body can control the SARS-CoV-2 infection. Herein, we report for the first time that human host defense neutrophil α-defensin HNP1 and human cathelicidin LL-37 peptide-conjugated graphene quantum dots (GQDs) have the capability to prevent the delta variant virus entry into the host cells via blocking SARS-CoV-2 delta variant (B.1.617.2) spike protein receptor-binding domain (RBD) binding with host cells' angiotensin converting enzyme 2 (ACE2). Experimental data shows that due to the binding between the delta variant spike protein RBD and bioconjugate GQDs, in the presence of the delta variant spike protein, the fluorescence signal from GQDs quenched abruptly. Experimental quenching data shows a nonlinear Stern-Volmer quenching profile, which indicates multiple binding sites. Using the modified Hill equation, we have determined n = 2.6 and the effective binding affinity 9 nM, which is comparable with the ACE2-spike protein binding affinity (8 nM). Using the alpha, beta, and gamma variant spike-RBD, experimental data shows that the binding affinity for the delta B.1.617.2 variant is higher than those for the other variants. Further investigation using the HEK293T-human ACE2 cell line indicates that peptide-conjugated GQDs have the capability for completely inhibiting the entry of delta variant SARS-CoV-2 pseudovirions into host cells via blocking the ACE2-spike protein binding. Experimental data shows that the inhibition efficiency for LL-37 peptide- and HNP1 peptide-attached GQDs are much higher than that of only one type of peptide-attached GQDs.

14.
Pharm Res ; 39(3): 541-551, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35237922

ABSTRACT

PURPOSE: Intranasally administered unfractionated heparin (UFH) and other sulfated polysaccharides are potential prophylactics for COVID-19. The purpose of this research was to measure the safety and pharmacokinetics of clearance of intranasally administered UFH solution from the nasal cavity. METHODS: Double-blinded daily intranasal dosing in C57Bl6 mice with four doses (60 ng to 60 µg) of UFH was carried out for fourteen consecutive days, with both blood coagulation measurements and subject adverse event monitoring. The pharmacokinetics of fluorescent-labeled UFH clearance from the nasal cavity were measured in mice by in vivo imaging. Intranasal UFH at 2000 U/day solution with nasal spray device was tested for safety in a small number of healthy human subjects. RESULTS: UFH showed no evidence of toxicity in mice at any dose measured. No significant changes were observed in activated partial thromboplastin time (aPTT), platelet count, or frequency of minor irritant events over vehicle-only control. Human subjects showed no significant changes in aPTT time, international normalized ratio (INR), or platelet count over baseline measurements. No serious adverse events were observed. In vivo imaging in a mouse model showed a single phase clearance of UFH from the nasal cavity. After 12 h, 3.2% of the administered UFH remained in the nasal cavity, decaying to background levels by 48 h. CONCLUSIONS: UFH showed no toxic effects for extended daily intranasal dosing in mice as well as humans. The clearance kinetics of intranasal heparin solution from the nasal cavity indicates potentially protective levels for up to 12 h after dosing.


Subject(s)
COVID-19 , Heparin , Animals , Anticoagulants/adverse effects , Humans , Mice , Mice, Inbred C57BL , Partial Thromboplastin Time
15.
Pharmaceuticals (Basel) ; 15(2)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35215371

ABSTRACT

With the increased prevalence of new SARS-CoV-2 variants of concern, such as Delta and Omicron, the COVID-19 pandemic has become an ongoing human health disaster, killing millions worldwide. SARS-CoV-2 invades its host through the interaction of its spike (S) protein with a host cell receptor, angiotensin-converting enzyme 2 (ACE2). In addition, heparan sulfate (HS) on the surface of host cells plays an important role as a co-receptor for this viral pathogen-host cell interaction. Our previous studies demonstrated that many sulfated glycans, such as heparin, fucoidans, and rhamnan sulfate have anti-SARS-CoV-2 activities. In the current study, a small library of sulfated glycans and highly negatively charged compounds, including pentosan polysulfate (PPS), mucopolysaccharide polysulfate (MPS), sulfated lactobionic acid, sulodexide, and defibrotide, was assembled and evaluated for binding to the S-proteins and inhibition of viral infectivity in vitro. These compounds inhibited the interaction of the S-protein receptor-binding domain (RBD) (wild type and different variants) with immobilized heparin, a highly sulfated HS, as determined using surface plasmon resonance (SPR). PPS and MPS showed the strongest inhibition of interaction of heparin and S-protein RBD. The competitive binding studies showed that the IC50 of PPS and MPS against the S-protein RBD binding to immobilized heparin was ~35 nM and ~9 nM, respectively, much lower than the IC50 for soluble heparin (IC50 = 56 nM). Both PPS and MPS showed stronger inhibition than heparin on the S-protein RBD or spike pseudotyped lentiviral particles binding to immobilized heparin. Finally, in an in vitro cell-based assay, PPS and MPS exhibited strong antiviral activities against pseudotyped viral particles of SARS-CoV-2 containing wild-type or Delta S-proteins.

16.
medRxiv ; 2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35194614

ABSTRACT

PURPOSE: Intranasally administered unfractionated heparin (UFH) and other sulfated polysaccharides are potential prophylactics for COVID-19. The purpose of this research was to measure the safety and pharmacokinetics of clearance of intranasally administered UFH solution from the nasal cavity. METHODS: Double-blinded daily intranasal dosing in C57Bl6 mice with four doses (60 ng to 60 µg) of UFH was carried out for fourteen consecutive days, with both blood coagulation measurements and subject adverse event monitoring. The pharmacokinetics of fluorescent-labeled UFH clearance from the nasal cavity were measured in mice by in vivo imaging. Intranasal UFH at 2000 U/day solution with nasal spray device was tested for safety in a small number of healthy human subjects. RESULTS: UFH showed no evidence of toxicity in mice at any dose measured. No significant changes were observed in activated partial thromboplastin time (aPTT), platelet count, or frequency of minor irritant events over vehicle-only control. Human subjects showed no significant changes in aPTT time, international normalized ratio (INR), or platelet count over baseline measurements. No serious adverse events were observed. In vivo imaging in a mouse model showed a single phase clearance of UFH from the nasal cavity. After 12 hours, 3.2% of the administered UFH remained in the nasal cavity, decaying to background levels by 48 hours. CONCLUSIONS: UFH showed no toxic effects for extended daily intranasal dosing in mice as well as humans. The clearance kinetics of intranasal heparin solution from the nasal cavity indicates potentially protective levels for up to 12 hours after dosing.

17.
Mar Drugs ; 19(12)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34940684

ABSTRACT

The COVID-19 pandemic is a major human health concern. The pathogen responsible for COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), invades its host through the interaction of its spike (S) protein with a host cell receptor, angiotensin-converting enzyme 2 (ACE2). In addition to ACE2, heparan sulfate (HS) on the surface of host cells also plays a significant role as a co-receptor. Our previous studies demonstrated that sulfated glycans, such as heparin and fucoidans, show anti-COVID-19 activities. In the current study, rhamnan sulfate (RS), a polysaccharide with a rhamnose backbone from a green seaweed, Monostroma nitidum, was evaluated for binding to the S-protein from SARS-CoV-2 and inhibition of viral infectivity in vitro. The structural characteristics of RS were investigated by determining its monosaccharide composition and performing two-dimensional nuclear magnetic resonance. RS inhibition of the interaction of heparin, a highly sulfated HS, with the SARS-CoV-2 spike protein (from wild type and different mutant variants) was studied using surface plasmon resonance (SPR). In competitive binding studies, the IC50 of RS against the S-protein receptor binding domain (RBD) binding to immobilized heparin was 1.6 ng/mL, which is much lower than the IC50 for heparin (~750 ng/mL). RS showed stronger inhibition than heparin on the S-protein RBD or pseudoviral particles binding to immobilized heparin. Finally, in an in vitro cell-based assay, RS showed strong antiviral activities against wild type SARS-CoV-2 and the delta variant.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Deoxy Sugars/pharmacology , Mannans/pharmacology , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , Seaweed , Antiviral Agents/therapeutic use , Aquatic Organisms , Deoxy Sugars/therapeutic use , Humans , Mannans/therapeutic use , Plant Extracts/therapeutic use , Protein Binding/drug effects , Spike Glycoprotein, Coronavirus/drug effects , Structure-Activity Relationship
18.
Viruses ; 13(11)2021 11 15.
Article in English | MEDLINE | ID: mdl-34835083

ABSTRACT

Human cytomegalovirus (HCMV) tegument protein pp150 is essential for the completion of the final steps in virion maturation. Earlier studies indicated that three pp150nt (N-terminal one-third of pp150) conformers cluster on each triplex (Tri1, Tri2A and Tri2B), and extend towards small capsid proteins atop nearby major capsid proteins, forming a net-like layer of tegument densities that enmesh and stabilize HCMV capsids. Based on this atomic detail, we designed several peptides targeting pp150nt. Our data show significant reduction in virus growth upon treatment with one of these peptides (pep-CR2) with an IC50 of 1.33 µM and no significant impact on cell viability. Based on 3D modeling, pep-CR2 specifically interferes with the pp150-capsid binding interface. Cells pre-treated with pep-CR2 and infected with HCMV sequester pp150 in the nucleus, indicating a mechanistic disruption of pp150 loading onto capsids and subsequent nuclear egress. Furthermore, pep-CR2 effectively inhibits mouse cytomegalovirus (MCMV) infection in cell culture, paving the way for future animal testing. Combined, these results indicate that CR2 of pp150 is amenable to targeting by a peptide inhibitor, and can be developed into an effective antiviral.


Subject(s)
Capsid Proteins/ultrastructure , Phosphoproteins/metabolism , Phosphoproteins/physiology , Viral Matrix Proteins/metabolism , Viral Matrix Proteins/physiology , Animals , Capsid , Capsid Proteins/metabolism , Cryoelectron Microscopy/methods , Cytomegalovirus/genetics , Cytomegalovirus/metabolism , Cytomegalovirus/pathogenicity , Cytomegalovirus Infections/metabolism , Humans , Mice , Muromegalovirus/metabolism , Muromegalovirus/pathogenicity , Phosphoproteins/ultrastructure , Viral Matrix Proteins/ultrastructure , Virion , Virus Assembly
19.
J Biol Chem ; 297(4): 101207, 2021 10.
Article in English | MEDLINE | ID: mdl-34537241

ABSTRACT

Certain sulfated glycans, including those from marine sources, can show potential effects against SARS-CoV-2. Here, a new fucosylated chondroitin sulfate (FucCS) from the sea cucumber Pentacta pygmaea (PpFucCS) (MW ∼10-60 kDa) was isolated and structurally characterized by NMR. PpFucCS is composed of {→3)-ß-GalNAcX-(1→4)-ß-GlcA-[(3→1)Y]-(1→}, where X = 4S (80%), 6S (10%) or nonsulfated (10%), Y = α-Fuc2,4S (40%), α-Fuc2,4S-(1→4)-α-Fuc (30%), or α-Fuc4S (30%), and S = SO3-. The anti-SARS-CoV-2 activity of PpFucCS and those of the FucCS and sulfated fucan isolated from Isostichopus badionotus (IbFucCS and IbSF) were compared with that of heparin. IC50 values demonstrated the activity of the three holothurian sulfated glycans to be ∼12 times more efficient than heparin, with no cytotoxic effects. The dissociation constant (KD) values obtained by surface plasmon resonance of the wildtype SARS-CoV-2 spike (S)-protein receptor-binding domain (RBD) and N501Y mutant RBD in interactions with the heparin-immobilized sensor chip were 94 and 1.8 × 103 nM, respectively. Competitive surface plasmon resonance inhibition analysis of PpFucCS, IbFucCS, and IbSF against heparin binding to wildtype S-protein showed IC50 values (in the nanomolar range) 6, 25, and 6 times more efficient than heparin, respectively. Data from computational simulations suggest an influence of the sulfation patterns of the Fuc units on hydrogen bonding with GlcA and that conformational change of some of the oligosaccharide structures occurs upon S-protein RBD binding. Compared with heparin, negligible anticoagulant action was observed for IbSF. Our results suggest that IbSF may represent a promising molecule for future investigations against SARS-CoV-2.


Subject(s)
Polysaccharides/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Sulfates/chemistry , Animals , Binding Sites , COVID-19/pathology , COVID-19/virology , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/metabolism , Kinetics , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Partial Thromboplastin Time , Polysaccharides/chemistry , Protein Binding , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Sea Cucumbers/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Surface Plasmon Resonance
20.
PLoS Pathog ; 17(8): e1009803, 2021 08.
Article in English | MEDLINE | ID: mdl-34352038

ABSTRACT

Several enveloped viruses, including herpesviruses attach to host cells by initially interacting with cell surface heparan sulfate (HS) proteoglycans followed by specific coreceptor engagement which culminates in virus-host membrane fusion and virus entry. Interfering with HS-herpesvirus interactions has long been known to result in significant reduction in virus infectivity indicating that HS play important roles in initiating virus entry. In this study, we provide a series of evidence to prove that specific sulfations as well as the degree of polymerization (dp) of HS govern human cytomegalovirus (CMV) binding and infection. First, purified CMV extracellular virions preferentially bind to sulfated longer chain HS on a glycoarray compared to a variety of unsulfated glycosaminoglycans including unsulfated shorter chain HS. Second, the fraction of glycosaminoglycans (GAG) displaying higher dp and sulfation has a larger impact on CMV titers compared to other fractions. Third, cell lines deficient in specific glucosaminyl sulfotransferases produce significantly reduced CMV titers compared to wild-type cells and virus entry is compromised in these mutant cells. Finally, purified glycoprotein B shows strong binding to heparin, and desulfated heparin analogs compete poorly with heparin for gB binding. Taken together, these results highlight the significance of HS chain length and sulfation patterns in CMV attachment and infectivity.


Subject(s)
Cell Membrane/metabolism , Cytomegalovirus Infections/virology , Cytomegalovirus/physiology , Glycosaminoglycans/chemistry , Heparitin Sulfate/chemistry , Polymerization , Virus Internalization , Animals , Cell Membrane/virology , Cytomegalovirus Infections/metabolism , Fibroblasts/metabolism , Fibroblasts/virology , Glycosaminoglycans/metabolism , Heparitin Sulfate/metabolism , Humans , Mice , Virion
SELECTION OF CITATIONS
SEARCH DETAIL
...