Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Gynecol Pathol ; 32(2): 199-214, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23370656

ABSTRACT

Recent studies have demonstrated the value of ancillary techniques, including p57 immunohistochemistry and short tandem repeat genotyping, for distinguishing hydatidiform moles (HM) from nonmolar specimens and for subtyping HMs as complete hydatidiform moles (CHM) and partial hydatidiform moles (PHM). With rare exceptions, CHMs are p57-negative and androgenetic diploid; partial hydatidiform moles are p57-positive and diandric triploid; and nonmolar specimens are p57-positive and biparental diploid. Androgenetic/biparental mosaic/chimeric conceptions can have morphologic features that overlap with HMs but are genetically distinct. This study characterizes 11 androgenetic/biparental mosaic/chimeric conceptions identified in a series of 473 products of conception specimens subjected to p57 immunohistochemistry and short tandem repeat genotyping. Fluorescence in situ hybridization was performed on 10 to assess ploidy. All cases were characterized by hydropically enlarged, variably sized and shaped villi. In 5 cases, the villi lacked trophoblastic hyperplasia, whereas in 6 there was a focal to extensive villous component with trophoblastic hyperplasia and features of CHM. The villi lacking trophoblastic hyperplasia were characterized by discordant p57 expression within individual villi (p57-positive cytotrophoblast and p57-negative stromal cells), whereas the villous components having trophoblastic hyperplasia were uniformly p57-negative in both cell types. Short tandem repeat genotyping of at least 2 villous areas in each case demonstrated an excess of paternal alleles in all regions, with variable paternal:maternal allele ratios (usually >2:1); pure androgenetic diploidy was identified in those cases with a sufficiently sized villous component having trophoblastic hyperplasia and features of CHM. Fluorescence in situ hybridization demonstrated uniform diploidy in 7 cases, including 4 of 5 tested cases with trophoblastic hyperplasia and 3 of 5 cases without trophoblastic hyperplasia. Two cases without trophoblastic hyperplasia had uniformly diploid villous stromal cells but 1 had triploid and 1 had tetraploid cytotrophoblast; 1 case with trophoblastic hyperplasia had uniformly diploid villous stromal cells but a mixture of diploid, triploid, and tetraploid cytotrophoblast. In 3 cases with a CHM component, persistent gestational trophoblastic disease developed. These results indicate that androgenetic/biparental mosaic/chimeric conceptions are most often an admixture of androgenetic diploid (p57-negative) and biparental diploid (p57-positive) cell lines but some have localized hyperdiploid components. Recognition of their distinctive p57 expression patterns and genotyping results can prevent misclassification as typical CHMs, PHMs, or nonmolar specimens. The presence of androgenetic cell lines, particularly in those with a purely androgenetic CHM component, warrants follow-up because of some risk of persistent gestational trophoblastic disease.


Subject(s)
Chimera/genetics , Cyclin-Dependent Kinase Inhibitor p57/analysis , Gestational Trophoblastic Disease/genetics , Hydatidiform Mole/chemistry , Hydatidiform Mole/genetics , Mosaicism , Adolescent , Adult , Diploidy , Female , Genotype , Humans , Hydatidiform Mole/physiopathology , Hyperplasia , Immunohistochemistry , Male , Microsatellite Repeats , Middle Aged , Pregnancy , Triploidy , Trophoblasts/pathology
2.
Int J Gynecol Pathol ; 31(1): 73-9, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22123726

ABSTRACT

Distinction of hydatidiform moles from nonmolar specimens and their subclassification as complete (complete hydatidiform mole) versus partial hydatidiform mole (PHM) are important for clinical practice and investigational studies to refine ascertainment of risk of persistent gestational trophoblastic disease, which differs among these entities. Immunohistochemical analysis of p57 expression, a paternally imprinted maternally expressed gene on 11p15.5, and molecular genotyping are useful for improving diagnosis. Here, we describe a first trimester abortus with morphologic features consistent with a hydatidiform mole and p57 expression pattern supporting a diagnosis of PHM. Short tandem repeat (STR) genotyping and fluorescent in-situ hybridization analysis showed tetraploidy with 3 paternal and 1 maternal chromosome complements. To our knowledge, this is the first description of a tetraploid PHM confirmed to be triandric by STR analysis, and the first description of p57 immunostaining in a confirmed triandric tetraploid PHM. This case highlights the complex nature of the genetics that can be encountered in molar specimens and illustrates that STR genotyping, in contrast to fluorescent in-situ hybridization or ploidy analysis, offers the advantage of determining the parental origin of chromosome complements for refined diagnosis of hydatidiform moles.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p57/metabolism , Hydatidiform Mole/genetics , Microsatellite Repeats/genetics , Pregnancy Complications, Neoplastic/genetics , Uterine Neoplasms/genetics , Adult , Animals , Antibodies, Monoclonal , Chromosomes, Human, X , Chromosomes, Human, Y , Cyclin-Dependent Kinase Inhibitor p57/genetics , Female , Gene Dosage , Genotyping Techniques , Humans , Hydatidiform Mole/metabolism , Hydatidiform Mole/pathology , Immunohistochemistry , In Situ Hybridization, Fluorescence , Mice , Pregnancy , Pregnancy Complications, Neoplastic/metabolism , Pregnancy Complications, Neoplastic/pathology , Tetraploidy , Uterine Neoplasms/metabolism , Uterine Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...