Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Invest Ophthalmol Vis Sci ; 54(3): 1582-90, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23385791

ABSTRACT

PURPOSE: It is well established that lens fiber differentiation depends on an FGF-initiated growth factor signaling cascade. Given that recent studies indicate Wnt-Frizzled/Planar Cell Polarity (Wnt-Fz/PCP) signaling has a role in coordinating the orientation and alignment of fibers, this study set out to investigate the relationship between this pathway and FGF-induced fiber differentiation. METHODS: Rat lens epithelial explants were cultured with FGF-2. Regulators of Wnt-Fz signaling, secreted frizzled-related protein-1 (Sfrp1), and inhibitor of Wnt production-2 (IWP-2) were applied to assess the role of this pathway in FGF-induced fiber differentiation. A TCF/Lef reporter mouse was used to assess canonical Wnt-Fz/ß-catenin signaling. RESULTS: FGF-induced fiber differentiation was accompanied by upregulation of Wnt-Fz signaling components, Fz3, Fz6, Dishevelled-2 (Dvl2), and Dishevelled-3. During differentiation, Fz and the centrosome/primary cilium translocated to the apical tip/leading edge of similarly polarized groups of cells. Addition of Sfrp1 or IWP-2 to FGF-treated explants inhibited cell elongation and reduced expression of fiber-specific markers, filensin and ß-crystallin. Expression of Wnt-Fz signaling components was also reduced and a significant reduction in the active form of Dvl2 indicated inhibition of the pathway. Analysis of the TCF/Lef reporter mouse showed no evidence of canonical Wnt-Fz/ß-catenin signaling during FGF-induced fiber differentiation. CONCLUSIONS: This study shows that Wnt-Fz signaling is a component of the FGF-initiated cascade that regulates fiber differentiation. The presence of groups of fibers with Fz and centrosome/primary cilium polarized to the leading edge of each cell is consistent with a role for noncanonical Wnt-Fz signaling in coordinating polarized behavior of differentiating fibers.


Subject(s)
Cell Differentiation/physiology , Fibroblast Growth Factor 2/metabolism , Lens, Crystalline/cytology , Signal Transduction/physiology , Wnt Proteins/physiology , Adaptor Proteins, Signal Transducing/metabolism , Animals , Dishevelled Proteins , Eye Proteins/metabolism , Frizzled Receptors/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Intermediate Filament Proteins/metabolism , Membrane Proteins/metabolism , Mice , Phosphoproteins/metabolism , Rats , Rats, Wistar , Up-Regulation/physiology , beta-Crystallins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...