Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Science ; 267(5199): 865-7, 1995 Feb 10.
Article in English | MEDLINE | ID: mdl-17813916

ABSTRACT

A neutral templating route for preparing mesoporous molecular sieves is demonstrated based on hydrogen-bonding interactions and self-assembly between neutral primary amine micelles (S degrees ) and neutral inorganic precursors (l degrees ). The S degrees l degrees templating pathway produces ordered mesoporous materials with thicker framework walls, smaller x-ray scattering domain sizes, and substantially improved textural mesoporosities in comparison with M41S materials templated by quaternary ammonium cations of equivalent chain length. This synthetic strategy also allows for the facile, environmentally benign recovery of the cost-intensive template by simple solvent extraction methods. The S degrees 1 degrees templating route provides for the synthesis of other oxide mesostructures (such as aluminas) that may be less readily accessible by electrostatic templating pathways.

2.
Nature ; 368(6469): 321-3, 1994 Mar 24.
Article in English | MEDLINE | ID: mdl-8127366

ABSTRACT

Titanium silicalite is an effective molecular-sieve catalyst for the selective oxidation of alkanes, the hydroxylation of phenol and the epoxidation of alkenes in the presence of H2O2 (refs 1-3). The range of organic compounds that can be oxidized is greatly limited, however, by the relatively small pore size (about 0.6 nm) of the host framework. Large-pore (mesoporous) silica-based molecular sieves have been prepared recently by Kresge et al. and Kuroda et al.; the former used a templating approach in which the formation of an inorganic mesoporous structure is assisted by self-organization of surfactants, and the latter involved topochemical rearrangement of a layered silica precursor. Here we describe the use of the templating approach to synthesize mesoporous silica-based molecular sieves partly substituted with titanium--large-pore analogues of titanium silicalite. We find that these materials show selective catalytic activity towards the oxidation of 2,6-di-tert-butyl phenol to the corresponding quinone and the conversion of benzene to phenol.


Subject(s)
Hydrocarbons/chemistry , Silicon Dioxide/chemistry , Titanium/chemistry , Amines/chemistry , Catalysis , Crystallography, X-Ray , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL