Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 8(7)2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32630107

ABSTRACT

The rice-starch processing industry produces large amounts of a protein-rich byproducts during the conversion of broken rice to powder and crystal starch. Given the poor protein solubility, this material is currently discarded or used as animal feed. To fully exploit rice's nutritional properties and reduce this waste, a biotechnological approach was adopted, inducing fermentation with selected microorganisms capable of converting the substrate into peptide fractions with health-related bioactivity. Lactic acid bacteria were preferred to other microorganisms for their safety, efficient proteolytic system, and adaptability to different environments. Peptide fractions with different molecular weight ranges were recovered from the fermented substrate by means of cross-flow membrane filtration. The fractions displayed in vitro antioxidant, antihypertensive, and anti-tyrosinase activities as well as cell-based anti-inflammatory and anti-aging effects. In the future, the peptide fractions isolated from this rice byproduct could be directly exploited as health-promoting functional foods, dietary supplements, and pharmaceutical preparations. The suggested biotechnological process harnessing microbial bioconversion may represent a potential solution for many different protein-containing substrates currently treated as byproducts (or worse, waste) by the food industry.

2.
Microorganisms ; 7(11)2019 Oct 29.
Article in English | MEDLINE | ID: mdl-31671881

ABSTRACT

Vegetal drinks as a substitute for milk consumption are raising striking interest in the food industry. Soy and rice drinks are the most successful milk substitutes but are low in protein and fiber contents, are rich in sugars, and their cultivation systems are unsustainable; thus, alternative vegetal sources to resolve these limits must be found. A winning candidate could be hemp seed, which is a powerhouse of nutrients, is sugarless, rich in fiber and proteins, and little land and nutrients demanding. The aim is to develop novel drinks obtained from hemp seeds mixed or not with soy and rice and fermented with probiotics (Lactobacillus fermentum, Lb. plantarum, and Bifidobacterium bifidum). The drinks were characterized for their microbial growth, by means of culture-dependent and -independent techniques, and for their volatilome, by means of solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) analysis. The results showed that hemp seed drinks have a specific aroma and its compounds are dependent on the type of formulation and to the probiotic used. For example, in hemp seed drinks, 2-heptanol, 2-methyl, 2,4-decadienal, 2-butanone, 3-hydroxy, 2,3-butanedione, and propanoic acid were fine descriptors of probiotics fermentations. Multivariate analysis of volatile metabolites and their correlation to some physiological parameters and nutritional values offered a novel approach to assess the quality of functional hemp drinks which could result in a decisional tool for industrial applications.

3.
Food Chem ; 292: 211-216, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31054667

ABSTRACT

Amongst the processing technologies able to improve the functional features of cereal-based foods, sourdough fermentation using Lactic Acid Bacteria (LAB) has been recently rediscovered for its beneficial effects. Wheat (Triticum aestivum L.) bread doughs were prepared using LAB strains belonging to different Lactobacillus species and changes in phenolic acid, carotenoid content and antioxidant capacity were evaluated. Two L. plantarum strains out of six were able to significantly increase carotenoid content in the dough, suggesting that a higher mobilization/solubilisation of these antioxidant compounds occurs. Within different fractions (free, soluble-conjugated, insoluble-bound), the relative distribution of ferulic acid and antioxidant activity changes depending on the specific strain. Overall, results indicate that some LAB strains cause in situ changes, significantly increasing the content of functional compounds in doughs during fermentation. This, in turn, could improve the functional features of bakery foods characterised by a high content in carotenoids and other bioactive compounds.


Subject(s)
Antioxidants/chemistry , Bread/analysis , Carotenoids/analysis , Hydroxybenzoates/analysis , Lactobacillus/physiology , Chromatography, High Pressure Liquid , Coumaric Acids/chemistry , Flour/microbiology , Food Handling , Lactobacillus/isolation & purification , Triticum/chemistry , Triticum/metabolism
4.
Nutrients ; 9(11)2017 Nov 11.
Article in English | MEDLINE | ID: mdl-29137113

ABSTRACT

Nowadays the high nutritional value of whole grains is recognized, and there is an increasing interest in the ancient varieties for producing wholegrain food products with enhanced nutritional characteristics. Among ancient crops, einkorn could represent a valid alternative. In this work, einkorn flours were analyzed for their content in carotenoids and in free and bound phenolic acids, and compared to wheat flours. The most promising flours were used to produce conventional and sourdough fermented breads. Breads were in vitro digested, and characterized before and after digestion. The four breads having the best characteristics were selected, and the product of their digestion was used to evaluate their anti-inflammatory effect using Caco-2 cells. Our results confirm the higher carotenoid levels in einkorn than in modern wheats, and the effectiveness of sourdough fermentation in maintaining these levels, despite the longer exposure to atmospheric oxygen. Moreover, in cultured cells einkorn bread evidenced an anti-inflammatory effect, although masked by the effect of digestive fluid. This study represents the first integrated evaluation of the potential health benefit of einkorn-based bakery products compared to wheat-based ones, and contributes to our knowledge of ancient grains.


Subject(s)
Bread , Carotenoids/analysis , Diet, Healthy , Flour/analysis , Hydroxybenzoates/analysis , Nutritive Value , Triticum/chemistry , Whole Grains/chemistry , Caco-2 Cells , Cooking , Cytokines/metabolism , Digestion , Fermentation , Humans , Inflammation/immunology , Inflammation/metabolism , Inflammation/prevention & control , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...