Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 926: 171903, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38527555

ABSTRACT

With the rapid development of industries, agriculture, and urbanization (including transportation and population growth), there has been a significant alteration in the emission and atmospheric deposition of heavy metal pollutants. This has consequently given rise to a range of ecological and environmental health issues. In this study, we conducted a comprehensive two-year investigation on the temporal and spatial distribution characteristics of heavy metals in atmospheric deposition across China based on the Nationwide Nitrogen Deposition Monitoring Network (NNDMN). The atmospheric bulk deposition of Lead (Pb), Arsenic (As), Nickel (Ni), Selenium (Se), Chromium (Cr) and Cadmium (Cd) were 6.32 ± 1.59, 4.49 ± 0.57, 1.31 ± 0.21, 1.05 ± 0.16, 0.60 ± 0.06 and 0.21 ± 0.03 mg m-2 yr-1, respectively, with a large variation among the different regions of China. The order for atmospheric deposition flux was Southwest China > Southeast China > North China > Northeast China > Qinghai-Tibet Plateau and rural area > urban area > background area. The concentrations of heavy metals in bulk deposition exhibit seasonal variation with higher levels observed during winter compared to summer and spring, which are closely associated with anthropogenic activities. The Positive Matrix Factorization (PMF) results indicated that combustion, industrial emissions and traffic are the primary contributors to atmospheric deposition of heavy metals. The single factor pollution index (Pi) of heavy metals is consistently below 1, and the composite pollution index (Ni) is 0.16 across China, indicating that atmospheric heavy metal deposition is at a pollution-free level. The comprehensive potential ecological risk index of heavy metals is 11.8, with Cd exhibiting the highest single factor potential ecological risk index at 7.09, suggesting that more attention should be paid to Cd deposition in China. The present study reveals the spatial-temporal distribution pattern of atmospheric heavy metals deposition in China, identifying regional source characteristics and providing a theoretical foundation and strategies for reducing emissions of atmospheric pollutants.

2.
Ecotoxicol Environ Saf ; 257: 114911, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37154080

ABSTRACT

Machine learning (ML) is an advanced computer algorithm that simulates the human learning process to solve problems. With an explosion of monitoring data and the increasing demand for fast and accurate prediction, ML models have been rapidly developed and applied in air pollution research. In order to explore the status of ML applications in air pollution research, a bibliometric analysis was made based on 2962 articles published from 1990 to 2021. The number of publications increased sharply after 2017, comprising approximately 75% of the total. Institutions in China and United States contributed half of all publications with most research being conducted by individual groups rather than global collaborations. Cluster analysis revealed four main research topics for the application of ML: chemical characterization of pollutants, short-term forecasting, detection improvement and optimizing emission control. The rapid development of ML algorithms has increased the capability to explore the chemical characteristics of multiple pollutants, analyze chemical reactions and their driving factors, and simulate scenarios. Combined with multi-field data, ML models are a powerful tool for analyzing atmospheric chemical processes and evaluating the management of air quality and deserve greater attention in future.


Subject(s)
Air Pollutants , Air Pollution , Environmental Pollutants , Humans , United States , Air Pollution/analysis , Air Pollutants/analysis , Machine Learning , Environmental Pollutants/analysis , Bibliometrics
3.
Environ Sci Technol ; 57(16): 6599-6608, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37039455

ABSTRACT

Reducing atmospheric ammonia (NH3) emissions is critical to mitigating poor air quality. However, the contributions of major agricultural and non-agricultural source emissions to NH3 at receptor sites remain uncertain in many regions, hindering the assessment and implementation of effective NH3 reduction strategies. This study conducted simultaneous measurements of the monthly concentrations and stable nitrogen isotopes of NHx (gaseous NH3 plus particulate NH4+) at 16 sites across China. Ambient NHx concentrations averaged 21.7 ± 19.6 µg m-3 at rural sites, slightly higher than those at urban (19.2 ± 6.0 µg m-3) and three times of those at background (7.0 ± 6.9 µg m-3) sites. Based on revised δ15N values of the initial NH3, source apportionment results indicated that non-agricultural sources (traffic and waste) and agricultural sources (fertilizer and livestock) contributed 54 and 46% to NH3 at urban sites, 51 and 49% at rural sites, and 61 and 39% at background sites, respectively. Non-agricultural sources contributed more to NH3 at rural and background sites in cold than warm seasons, arising from traffic and waste, but were similar across seasons at urban sites. We concluded that non-agricultural sources need to be addressed when reducing ambient NH3 across China, even in rural regions.


Subject(s)
Air Pollutants , Ammonia , Ammonia/analysis , Air Pollutants/analysis , Bayes Theorem , Environmental Monitoring , China , Nitrogen Isotopes/analysis
5.
Huan Jing Ke Xue ; 43(7): 3884-3894, 2022 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-35791571

ABSTRACT

A long-term fertilization experiment with a system of rice-wheat rotation was conducted in Chengdu Plain. Three fertilization treatments including conventional fertilization (T1), pig manure substituting for 50% nitrogen fertilizer (T2), and T2 plus straw (T3) were set up to study the characteristics of microbial carbon source utilization of soil and dissolved organic matter (DOM). The results showed that T3 improved the soil microbial carbon source metabolism in comparison with those of the T1 and T2 treatments; the average color change rate (AWCD) increased by 16% and 48%, respectively. Meanwhile, T3 improved the soil DOM microbial carbon source metabolism, and the AWCD value was 0.43. The highest Shannon, Simpson, and McIntosh indexes of soil and DOM were all found in the T3 treatment, and the Shannon, Simpson, and McIntosh indexes of DOM were 2.73, 0.91, and 3.75, respectively. The results of principal component analysis and enrichment analysis showed that the main carbon sources used by microorganisms of soil and DOM were different under different fertilization treatments. For DOM, the main carbon source used by microorganisms in the T1 and T2 treatments was sugar, whereas T3 increased the utilization of amino acids, carboxylic acids, polymers, and amines. The changes in soil pH and texture were the main factors that caused the difference in soil DOM microbial carbon source metabolism. In conclusion, the application of organic fertilizer (pig manure plus straw) significantly increased the microbial community diversity and carbon source metabolic capacity of soil and DOM and promoted the diversification of microbial carbon source preference.


Subject(s)
Carbon , Soil , Animals , Carbon/chemistry , Dissolved Organic Matter , Fertilizers , Manure , Soil/chemistry , Soil Microbiology , Swine
6.
J Environ Sci (China) ; 122: 83-91, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35717093

ABSTRACT

We investigated variations of PM2.5 and water-soluble inorganic ions chemical characteristics at nine urban and rural sites in China using ground-based observations. From 2015 to 2019, mean PM2.5 concentration across all sites decreased by 41.9 µg/m3 with a decline of 46% at urban sites and 28% at rural sites, where secondary inorganic aerosol (SIAs) contributed to 21% (urban sites) and 17% (rural sites) of the decreased PM2.5. SIAs concentrations underwent a decline at urban locations, while sulfate (SO42-), nitrate (NO3-), and ammonium (NH4+) decreased by 49.5%, 31.3% and 31.6%, respectively. However, only SO42- decreased at rural sites, NO3- increased by 21% and NH4+ decreased slightly. Those changes contributed to an overall SIAs increase in 2019. Higher molar ratios of NO3- to SO42- and NH4+ to SO42- were observed at urban sites than rural sites, being highest in the heavily polluted days. Mean molar ratios of NH3/NHx were higher in 2019 than 2015 at both urban and rural sites, implying increasing NHx remained as free NH3. Our observations indicated a slower transition from sulfate-driven to nitrate-driven aerosol pollution and less efficient control of NOx than SO2 related aerosol formation in rural regions than urban regions. Moreover, the common factor at urban and rural sites appears to be a combination of lower SO42- levels and an increasing fraction of NO3- to PM2.5 under NH4+-rich conditions. Our findings imply that synchronous reduction in NOx and NH3 emissions especially rural areas would be effective to mitigate NO3--driven aerosol pollution.


Subject(s)
Air Pollutants , Particulate Matter , Aerosols/analysis , Air Pollutants/analysis , China , Environmental Monitoring , Nitrates/analysis , Nitrogen Oxides , Particulate Matter/analysis , Seasons , Sulfates/analysis , Water
7.
Sci Total Environ ; 830: 154740, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35341854

ABSTRACT

Atmospheric deposition is an important pathway for the input of anthropogenic and natural nutrients to terrestrial and aquatic ecosystems. However, previous measurements focused mainly on hotspot locations, ignoring the fact that the deposition magnitudes of various nutrient species (e.g., nitrogen (N), phosphorus (P)) at a national scale should be investigated jointly. To better characterize national scale bulk deposition, precipitation samples were collected at 41 sites across China from September 2015 to August 2016 and September 2017 to August 2018. The bulk deposition fluxes of total nitrogen (TN) and total phosphorus (TP) over the network were 27.5 kg N ha-1 yr-1 and 0.92 kg P ha-1 yr-1, respectively. Contributions of NH4+, NO3-, and dissolved organic nitrogen (DON) to TN averaged 32%, 32%, and 36%, respectively. Significant spatial and seasonal variations in concentrations and deposition fluxes of all nutrient species were observed reflecting effects of local reactive nitrogen (Nr) and P emissions and rainfall amount. Major sources were energy resource consumption for NO3-, agricultural activities for NH4+, and a mixed contribution of both anthropogenic and natural sources for DON and TP. Atmospheric N and P deposition represent important external nutrient inputs to ecosystems and a high ratio of TN to TP (29.9) may induce relative P-limitation and further increase the risk of eutrophication. This work reveals a new map of atmospheric N and P deposition and identifies regions where emissions should be controlled to mitigate long-term impacts of atmospheric deposition over China.


Subject(s)
Nitrogen , Phosphorus , China , Ecosystem , Environmental Monitoring , Nitrogen/analysis , Phosphorus/analysis
8.
Environ Sci Pollut Res Int ; 29(38): 57190-57203, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35344146

ABSTRACT

While intensive peach production has expanded rapidly in recent years, few studies have explored the environmental impacts associated with specific regional systems or the optimal management strategies to minimize associated environmental risks. Here, data from a survey of 290 native farmers were used to conduct a life cycle assessment to quantify the acidification potential (AP), global warming potential (GWP), eutrophication potential (EP), and reactive nitrogen (Nr) losses in peach production in Pinggu District, Beijing. Total annual Nr losses, and GWP, AP, and EP values for peach production in Pinggu District were respectively 10.7 kg N t-1, 857 kg CO2-eq t-1, 12.9 kg SO2-eq t-1, and 4.1 kg PO4-eq t-1. The principal driving factors were fertilizer production, transportation, and application, which together accounted for 94%, 67%, 75%, and 94% of Nr losses, GWP, AP, and EP, respectively. In the high yield, high nitrogen-use efficiency (HH) group, relative values of Nr losses, GWP, AP, and EP were respectively 33%, 25%, 39%, and 32% lower than the overall averages for 290 orchards. Further analyses indicate that improved farming practices such as decreasing application rates of fertilizers, increasing proportion of base fertilization rate, and proper fertilization frequency in the HH group were the main reasons for these orchards' better performance in peach yields and partial factor productivity of nitrogen fertilizer, and their reduced environmental impacts. These results highlight the need to optimize nutrient management in peach production in order simultaneously to realize both environmental sustainability and high productivity in the peach production system.


Subject(s)
Agriculture/methods , Environment , Fertilizers , Prunus persica/growth & development , Animals , Beijing , Farmers , Humans , Life Cycle Stages , Nitrogen/analysis , Surveys and Questionnaires
9.
Environ Pollut ; 281: 117027, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33857715

ABSTRACT

The Clean Air Action implemented by the Chinese government in 2013 has greatly improved air quality in the North China Plain (NCP). In this work, we report changes in the chemical components of atmospheric fine particulate matter (PM2.5) at four NCP sampling sites from 2012/2013 to 2017 to investigate the impacts and drivers of the Clean Air Action on aerosol chemistry, especially for secondary inorganic aerosols (SIA). During the observation period, the concentrations of PM2.5 and its chemical components (especially SIA, organic carbon (OC), and elemental carbon (EC)) and the frequency of polluted days (daily PM2.5 concentration ≥ 75 µg m-3) in the NCP, declined significantly at all four sites. Asynchronized reduction in SIA components (large decreases in SO42- with stable or even increased NO3- and NH4+) was observed in urban Beijing, revealing a shift of the primary form of SIA, which suggested the fractions of NO3- increased more rapidly than SO42- during PM2.5 pollution episodes, especially in 2016 and 2017. In addition, unexpected increases in the sulfur oxidation ratio (SOR) and the nitrogen oxidation ratio (NOR) were observed among sites and across years in the substantially decreased PM2.5 levels. They were largely determined by secondary aerosol precursors (i.e. decreased SO2 and NO2), photochemical oxidants (e.g. increased O3), temperature, and relative humidity via gas-phase and heterogeneous reactions. Our results not only highlight the effectiveness of the Action Plan for improving air quality in the NCP, but also suggest an increasing importance of SIA in determining PM2.5 concentration and composition.


Subject(s)
Air Pollutants , Air Pollution , Aerosols/analysis , Air Pollutants/analysis , Air Pollution/analysis , Beijing , China , Environmental Monitoring , Particulate Matter/analysis , Seasons
10.
Environ Sci Technol Lett ; 8(1): 32-38, 2021 Jan 12.
Article in English | MEDLINE | ID: mdl-37566379

ABSTRACT

This study investigates the concentrations and δ15N values of NH3 in Beijing during and after the 2020 COVID-19 lockdown. Higher NH3 concentrations and lower δ15N-NH3(measured) were observed at most sites in 2020 compared to 2017. Except for a site inside a tunnel, NH3 concentrations did not increase significantly after the lockdown had ended compared to those during the lockdown, while δ15N-NH3(measured) increased by 2.1-9.9‰. Nonagricultural sources (fossil fuel and urban waste) overall contributed 81% and 62% of NH3 at on-road (tunnel interior) and nonroad (CAU) sites in 2020, respectively, comparable to those in 2017 (without significant difference). The contribution of nonagricultural sources slightly increased after the lockdown compared to the contribution during the lockdown at the nonroad site and hardly changed at the tunnel interior site. Our results suggest that (1) unfavorable meteorological conditions, especially lower boundary layer heights and changes in regional transport patterns, might play a more important role than reduced anthropogenic emissions in the temporal variations of Beijing NH3 and (2) the effect of reduced anthropogenic emissions, during the COVID-19 outbreak or with the future implementation of emission control strategies, on atmospheric NH3 can be better demonstrated by isotope-based source apportionment of NH3, rather than only by changes in NH3 concentrations.

11.
Environ Int ; 144: 106022, 2020 11.
Article in English | MEDLINE | ID: mdl-32795750

ABSTRACT

China has experienced a dramatic change in atmospheric reactive nitrogen (Nr) emissions over the past four decades. However, it remains unclear how nitrogen (N) deposition has responded to increases and/or decreases in Nr emissions. This study quantitatively assesses temporal and spatial variations in measurements of bulk and calculated dry N deposition in China from 1980 to 2018. A long-term database (1980-2018) shows that bulk N deposition peaked in around 2000, and had declined by 45% by 2016-2018. Recent bulk and dry N deposition (based on monitoring from 2011 to 2018) decreased from 2011 to 2018, with current average values of 19.4 ± 0.8 and 20.6 ± 0.4 kg N ha-1 yr-1, respectively. Oxidized N deposition, especially dry deposition, decreased after 2010 due to NOx emission controls. In contrast, reduced N deposition was approximately constant, with reductions in bulk NH4+-N deposition offset by a continuous increase in dry NH3 deposition. Elevated NH3 concentrations were found at nationwide monitoring sites even at urban sites, suggesting a strong influence of both agricultural and non-agricultural sources. Current emission controls are reducing Nr emissions and deposition but further mitigation measures are needed, especially of NH3, built on broader regional emission control strategies.


Subject(s)
Air Pollutants , Nitrogen , Agriculture , Air Pollutants/analysis , China , Environmental Monitoring , Nitrogen/analysis
12.
Environ Sci Technol ; 54(1): 102-109, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31818095

ABSTRACT

Ammonia (NH3) emission reduction is key to limiting the deadly PM2.5 pollution globally. However, studies of long-term source apportionment of vertical NH3 are relatively limited. On the basis of the one-year measurements of weekly vertical profiles of δ15N-NH3 at 5 heights (2, 15, 102, 180, and 320 m) on a 325-m meteorological tower in urban Beijing, we found that vertical profiles of NH3 concentrations generally remained stable with height. δ15N-NH3 increased obviously as a function of height in cold seasons (with heating) and decreased in warm seasons (with fertilization), indicating a stronger human-induced seasonal variation via regional transport at higher altitudes. Relatively stable δ15N-NH3 near the ground surface suggested the strong local emission. The results of isotopic mixing model (SIAR) indicate that source apportionment using measured δ15N-NH3 only would overestimate the contribution of agricultural emissions to NH3. By using an estimation of initial δ15N-NH3, we found that nonagricultural sources contributed ∼72% of NH3 on average. Our study suggests that (i) both persistent nonagricultural and periodic agricultural emissions drive atmospheric NH3 concentration and its vertical distribution in urban Beijing; and (ii) source apportionment based on measured δ15N-NH3 only likely underestimates fossil fuel source contribution, if the combined NHx isotope effects are not considered.


Subject(s)
Air Pollutants , Ammonia , Beijing , China , Environmental Monitoring , Humans , Isotopes , Seasons
13.
Environ Sci Pollut Res Int ; 23(2): 1158-72, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26507724

ABSTRACT

Air pollution is one of the most serious environmental problems in China due to its rapid economic development alongside a very large consumption of fossil fuel, particularly in the North China Plain (NCP). During the period 2011-2014, we integrated active and passive sampling methods to perform continuous measurements of NH3, HNO3, NO2, and PM2.5 at two urban, one suburban, and two rural sites in the NCP. The annual average concentrations of NH3, NO2, and HNO3 across the five sites were in the ranges 8.5-23.0, 22.2-50.5, and 5.5-9.7 µg m(-3), respectively, showing no significant spatial differences for NH3 and HNO3 but significantly higher NO2 concentration at the urban sites. At each site, annual average concentrations of NH3 and NO2 showed increasing and decreasing trends, respectively, while there was no obvious trend in annual HNO3 concentrations. Daily PM2.5 concentrations ranged from 11.8 to 621.0 µg m(-3) at the urban site, from 19.8 to 692.9 µg m(-3) at the suburban site, and from 23.9 to 754.5 µg m(-3) at the two rural sites, with more than 70% of sampling days exceeding 75 µg m(-3). Concentrations of water-soluble ions in PM2.5 ranked differently between the non-rural and rural sites. The three dominant ions were NH4(+), NO3(-), and SO4(2-) and mainly existed as (NH4)2SO4, NH4HSO4, and NH4NO3, and their concentrations averaged 48.6 ± 44.9, 41.2 ± 40.8, and 49.6 ± 35.9 µg m(-3) at the urban, suburban, and rural sites, respectively. Ion balance calculations indicated that PM2.5 was neutral at the non-rural sites but acidic at the rural sites. Seasonal variations of the gases and aerosols exhibited different patterns, depending on source emission strength and meteorological conditions. Our results suggest that a feasible pathway to control PM2.5 pollution in the NCP should target ammonia and acid gases together.


Subject(s)
Air Pollutants/analysis , Ammonia/analysis , Particulate Matter/analysis , Aerosols/analysis , Air Pollution/analysis , China , Environmental Monitoring , Gases/analysis , Seasons
14.
Nature ; 494(7438): 459-62, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23426264

ABSTRACT

China is experiencing intense air pollution caused in large part by anthropogenic emissions of reactive nitrogen. These emissions result in the deposition of atmospheric nitrogen (N) in terrestrial and aquatic ecosystems, with implications for human and ecosystem health, greenhouse gas balances and biological diversity. However, information on the magnitude and environmental impact of N deposition in China is limited. Here we use nationwide data sets on bulk N deposition, plant foliar N and crop N uptake (from long-term unfertilized soils) to evaluate N deposition dynamics and their effect on ecosystems across China between 1980 and 2010. We find that the average annual bulk deposition of N increased by approximately 8 kilograms of nitrogen per hectare (P < 0.001) between the 1980s (13.2 kilograms of nitrogen per hectare) and the 2000s (21.1 kilograms of nitrogen per hectare). Nitrogen deposition rates in the industrialized and agriculturally intensified regions of China are as high as the peak levels of deposition in northwestern Europe in the 1980s, before the introduction of mitigation measures. Nitrogen from ammonium (NH4(+)) is the dominant form of N in bulk deposition, but the rate of increase is largest for deposition of N from nitrate (NO3(-)), in agreement with decreased ratios of NH3 to NOx emissions since 1980. We also find that the impact of N deposition on Chinese ecosystems includes significantly increased plant foliar N concentrations in natural and semi-natural (that is, non-agricultural) ecosystems and increased crop N uptake from long-term-unfertilized croplands. China and other economies are facing a continuing challenge to reduce emissions of reactive nitrogen, N deposition and their negative effects on human health and the environment.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Ecosystem , Environmental Monitoring/statistics & numerical data , Nitrogen/analysis , Air Pollutants/metabolism , Air Pollutants/supply & distribution , Air Pollution/statistics & numerical data , Animals , China , Greenhouse Effect , Human Activities , Humans , Nitrates/analysis , Nitrates/metabolism , Nitrogen/metabolism , Plants/chemistry , Plants/metabolism , Quaternary Ammonium Compounds/analysis , Quaternary Ammonium Compounds/metabolism
15.
J Environ Qual ; 40(1): 37-45, 2011.
Article in English | MEDLINE | ID: mdl-21488491

ABSTRACT

Air pollution has become one of the main environmental concerns in China since the 1980s due to China's rapid economic growth and resultant pollution. However, it is difficult to directly evaluate the anthropogenic contribution to air pollution in China. The 2008 Olympic Games in Beijing provided a unique opportunity for testing the contribution of anthropogenic pollution because of the clean-up controls on air quality in Beijing enforced over the period of the Games. In this case study, we monitored the concentrations of major air pollutants before, during, and after the Olympics at a suburban site in Beijing. Atmospheric concentrations of PM10, PM2.5, NH3, NO2, SO2, and the particulate ions NH4+, NO3-, SO4(2-) Ca2+, Mg2+, and K+ all decreased during the Olympic period because of strict emission controls, compared with the same period from 2005 to 2007. For example, the average PM10 concentration (61 microg m(-3)) during the Olympics was only 37% of that (166 microg m(-3)) in the same month (August) from 2005 to 2007. However, just 1 mo and 1 yr after the Games had ended, mean concentrations of these pollutants had increased significantly again. This rapid "recovery' of air pollutant concentrations after the Olympics suggests that China needs to implement long-lasting decreases in its air pollution in Beijing and other major cities.


Subject(s)
Air Pollutants/chemistry , Air Pollution/prevention & control , Environmental Monitoring/methods , Sports , Ammonia/chemistry , Atmosphere/analysis , China , Nitrogen Dioxide/chemistry , Particulate Matter , Sulfur Dioxide/chemistry , Time Factors
16.
Guang Pu Xue Yu Guang Pu Fen Xi ; 30(9): 2564-6, 2010 Sep.
Article in Chinese | MEDLINE | ID: mdl-21105440

ABSTRACT

As a key process of fertilization with soil test, the determination of soil effective nutrients has received great attention in recent years. Based on a series of standard solution mixtures, which simulate the soil nutrients extracted by Mehlich 3 (M3) reagent, the optimal operating condition of ICP-AES was explored in a systematic way. The results show that the 20 key nutrient elements (P, K, Ca, Mg, Na, Fe, Mn, Cu, Zn, Cd, Cr, Pb, Ni, Al, B, Mo, S, Si, Se, and As) in the solutions can be determined correctly and proficiently when ICP-AES is set at 0.80 L x min(-1) of carrier gas flux, with observation height 15 mm and power 1200 W. This study supplies a primary experimental foundation for establishing the determination technique of essential nutrient elements, extracted from soils in China with the general soil-nutrient extractant M3 reagent.

17.
Guang Pu Xue Yu Guang Pu Fen Xi ; 29(9): 2565-7, 2009 Sep.
Article in Chinese | MEDLINE | ID: mdl-19950676

ABSTRACT

Thlaspi caerulescens is commonly known as a zinc (Zn) and cadmium (Cd) hyperaccumulator, which can be used to clean up the Zn- and/or Cd-contaminated soil. However, it is unclear whether high soil Zn concentrations will stimulate undue accumulations of other elements to such an extent as to cause the nutrient unbalance in the soil. To address this question, the inductively coupled plasma-atomic emission spectrometry (ICP-AES) was employed to investigate the effect of Zn on the stoichiometry of Zn, Cd, K, P, Mg, Ca, Fe, Mn and Cu in T. caerulescens (Ganges ecotype) exposed to low, middle and high Zn concentrations (5, 50 and 500 micromol x L(-1), respectively) in a hydroponic experiment. The results showed that there were no significant variations in contents of Cd, K, P, Mg, Ca, Fe, Mn and Cu in the shoot of T. caerulescens, however, the Zn content in the shoot and root with 500 mciromol x L(-1) Zn treatment increased as much as 13 times higher than that with low Zn exposure, indicating that the plant is capable of Zn hyperaccumulating. The authors' study suggests that it is improbable to induce soil nutrient unbalance when T. caerulescensis (Ganges) is used for phytoremediation of Zn-contaminated soil, in that over-uptake of nutrient elements from the soil other than Zn was not observed, at least for the elements K, P, Mg, Ca, Fe, Mn and Cu.


Subject(s)
Cadmium , Soil Pollutants , Thlaspi/metabolism , Zinc , Biodegradation, Environmental , Hydroponics , Plant Roots , Soil
18.
Guang Pu Xue Yu Guang Pu Fen Xi ; 29(12): 3399-401, 2009 Dec.
Article in Chinese | MEDLINE | ID: mdl-20210179

ABSTRACT

Based on field measurements, the effects of atmospheric reactive nitrogen (ARN) on the middle/trace element concentrations in the leaves of wild plant humulus scandens were analyzed. Leaves of H. scandens were collected from six sites around Beijing in the North China Plain, and the concentrations of Ca, Mg, S, Fe, Mn, Cu, Zn, B, and Na in the leaves were determined with inductively coupled plasma atomic emission spectrometry (ICP-AES). The results showed that element concentrations in leaves ranked as Ca (41 106) > S (8 370) > Mg (6 628) > Fe(476) > Na (92) > B (78) > Mn (49) > Zn (38) > Cu (15) mg x kg(-1) dry matter; There were no significant difference in any of the individual element in the H. scandens leaves along the gradient of ARN, suggesting that the increasing demand of H. scandens for middle/trace elements, induced by the enhanced nitrogen availability from ARN, was not yet beyond the nutrient-supply limits of the local soils. This study offers reference to scientific assessments of the middle/trace element status in terrestrial herbaceous plants under the global background of increasing nitrogen deposition.


Subject(s)
Humulus/chemistry , Plant Leaves/chemistry , Reactive Nitrogen Species/analysis , Spectrophotometry, Atomic , Trace Elements/analysis , Atmosphere
SELECTION OF CITATIONS
SEARCH DETAIL
...