Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
1.
J Inflamm Res ; 17: 3967-3982, 2024.
Article in English | MEDLINE | ID: mdl-38915807

ABSTRACT

Background: Inflammation and cardiac fibrosis are important pathogenic drivers of heart failure. The fibrosis-4 index (FIB-4) is associated with a higher degree of fibrosis. The systemic immune inflammation index (SII) is associated with a higher degree of systemic inflammation status. Previous studies have shown that they are associated with a poor prognosis for cardiovascular disease. We sought to investigate the value of FIB-4 combined with the SII as a novel inflammation-fibrosis combined index (IFCI) in predicting left ventricular reverse remodeling (LVRR) and prognosis among reduced ejection fraction heart failure (HFrEF) patients. Methods: A total of 895 patients with HFrEF were continuously recruited. Receiver operating characteristic curves were drawn to assess the abilities of inflammation-fibrosis indicators to predict LVRR. Multivariable Cox regression analysis was used to examine independent predictors of composite cardiac events and all-cause death. Results: After six months of follow-up, 344 (38.4%) patients experienced LVRR. The IFCI had the largest area under the curve (0.835, P < 0.001). In multivariate-adjusted logistic regression analyses, FIB-4, SII, and IFCI were predictive of LVRR (P value < 0.05). The IFCI was associated with a 3.686-fold higher risk of non-LVRR (odds ratio [OR] = 3.686, P < 0.001). Moreover, an increased IFCI predicted a poor prognosis in HFrEF patients. The highest risk of composite cardiac events (hazard ratio [HR] = 2.716, P < 0.001) was observed in the top IFCI-tertile group, and similar results were found regarding independent risk indicators of all-cause death. Conclusion: In summary, this study indicated that increased IFCI at admission offers good predictability regarding non-LVRR and predicts the risk of all-cause mortality or composite cardiovascular events due to HFrEF patients and could be used as a novel marker.

2.
J Agric Food Chem ; 72(19): 10936-10943, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691835

ABSTRACT

RNAi plays a crucial role in insect gene function research and pest control field. Nonetheless, the variable efficiency of RNAi across diverse insects and off-target effects also limited its further application. In this study, we cloned six essential housekeeping genes from Solenopsis invicta and conducted RNAi experiments by orally administering dsRNA. Then, we found that mixing with liposomes significantly enhanced the RNAi efficiency by targeting for SiV-ATPaseE. Additionally, we observed a certain lethal effect of this dsRNA on queens by our established RNAi system. Furthermore, no strict sequence-related off-target effects were detected. Finally, the RNAi effect of large-scale bacteria expressing dsRNA was successfully confirmed for controlling S. invicta. In summary, this study established an RNAi system for S. invicta and provided a research template for the future development of nucleic acid drugs based on RNAi.


Subject(s)
Ants , Insect Proteins , RNA Interference , Animals , Insect Proteins/genetics , Insect Proteins/metabolism , Ants/genetics , Insect Control/methods , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , Pest Control, Biological/methods , Female , Fire Ants
3.
Fish Shellfish Immunol ; 148: 109476, 2024 May.
Article in English | MEDLINE | ID: mdl-38447780

ABSTRACT

Trachinotus ovatus is an economically important fish and has been recommended as a high-quality aquaculture fish breed for the high-quality development of sea ranches in the South China Sea. However, T. ovatus shows intolerance to low temperature, greatly limiting the extension of farming scale, reducing production efficiency in winter, and increasing farming risks. In this study, liver transcriptome analysis was investigated in T. ovatus under acute low temperature conditions (20 and 15 °C) using RNA sequencing (RNA-Seq) technology. Inter-groups differential expression analysis and trend analysis screened 1219 DEGs and four significant profiles (profiles 0, 3, 4, and 7), respectively. GO enrichment analysis showed that these DEGs were mainly related to metabolic process and cell growth and death process. KEGG enrichment analysis found that DEGs were mainly associated with lipid metabolism, carbohydrate metabolism, and cell growth and death, such as gluconeogenesis, glycolysis, fatty acid oxidation, cholesterol biosynthesis, p53 signaling pathway, cell cycle arrest, and apoptotic cell death. Moreover, protein-protein interaction networks identified two hub genes (FOS and JUNB) and some important genes related to metabolic process and cell growth and death process, that corresponding to enrichment analysis. Overall, gluconeogenesis, lipid mobilization, and fatty acid oxidation in metabolic process and cell cycle arrest and apoptotic cell death in cell growth and death process were enhanced, while glycolysis, liver glycogen synthesis and cholesterol biosynthesis in metabolic process were inhibited. The enhancement or attenuatment of metabolic process and cell growth and death process is conducive to maintain energy balance, normal fluidity of cell membrane, normal physiological functions of liver cell, enhancing the tolerance of T. ovatus to cold stress. These results suggested that metabolic process and cell growth and death process play important roles in response to acute cold stress in the liver of T. ovatus. Gene expreesion level analysis showed that acute cold stress at 15 °C was identified as a critical temperature point for T. ovatus in term of cellular metabolism alteration and apoptosis inducement, and rewarming intervention should be timely implemented above 15 °C. Our study can provide theoretical support for breeding cold-tolerant cultivars of T. ovatus, which is contributed to high-quality productions fish production.


Subject(s)
Cold-Shock Response , Gene Expression Profiling , Animals , Cold-Shock Response/genetics , Gene Expression Profiling/veterinary , Fishes/genetics , Liver/metabolism , Cold Temperature , Cholesterol/metabolism , Fatty Acids/metabolism , Transcriptome
4.
Insects ; 15(3)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38535357

ABSTRACT

Endoparasitoids are insects that develop within other insects, employing unique strategies to enhance their offspring's survival. They inject polydnavirus and/or venom into their hosts along with eggs, effectively suppressing the host's immune system. Polydnavirus from Braconidae and Ichneumonidae wasps can integrate into the host's genome to express viral genes using the host's transcription systems. However, the ability of parasitoids without polydnavirus to manipulate host gene expression remains unclear. Lysine acetylation (LysAc), a post-translational modification critical for gene regulation, is hypothesized to be used by endoparasitoids lacking polydnavirus. We utilized the Chalcidoidea wasp Tetrastichus brontispae, which lacks polydnavirus, as an idiobiont endoparasitoid model to test this hypothesis, with pupae of the nipa palm hispid beetle Octodonta nipae as the host. Parasitism by T. brontispae resulted in the reduced expression of histone deacetylase Rpd3 and elevated levels of LysAc modification at histones H3.3K9 and H3.3K14 through proteomics and LysAc modification omics. The knockdown of Rpd3 increased the expression level of OnPPAF1 and OnPPO involved in the phenoloxidase cascade, leading to melanization in the host body whereby it resembled a mummified parasitized pupa and ultimately causing pupa death. This study enhances our understanding of how endoparasitoids employ histone acetylation to regulate immunity-related genes, offering valuable insights into their survival strategies.

5.
J Environ Manage ; 354: 120388, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38382436

ABSTRACT

China has adopted a national carbon emissions trading market to promote emission reductions, but until now, overallocation of allowances suffer low carbon prices and thus to unfulfilled emission reduction goals. We report a general equilibrium modeling that indicates the flexible compliance and price adjustment mechanism of the carbon market, along with explores the solution to the oversupply of allowances in the China's national carbon market. We find that, under the current policy, the initial loose allowance allocation decreases the overall carbon price, and simultaneously the total amount of banked carbon allowances reaches 4.880 billion tons in 2030, resulting in the level of carbon price cannot achieve NDC (Nationally Determined Contribution) targets. However, by introducing carbon market price adjustment schemes, we observe that the cumulative amount of allowances can effectively reduce, enabling the carbon price rising. Importantly, the amount of the supply of allowances decreases most under the benchmark decrease scenario, which increases the emission reduction pressure of the enterprises from the beginning, leading to the largest economic losses, the price-based adjustment mechanism raises the carbon price to expected level at the minimize economic losses, and the quantity-based adjustment mechanism is more sensitive to policy parameters compared to the price -based adjustment mechanism. These findings offer a promising avenue for selecting cost-effective price adjustment mechanism to improve price mechanism design for national carbon markets.


Subject(s)
Carbon , Policy , Carbon/analysis , China , Environmental Policy
6.
Int J Mol Sci ; 25(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38256129

ABSTRACT

Trachinotus ovatus is an economically important mariculture fish, and hypoxia has become a critical threat to this hypoxia-sensitive species. However, the molecular adaptation mechanism of T. ovatus liver to hypoxia remains unclear. In this study, we investigated the effects of acute hypoxic stress (1.5 ± 0.1 mg·L-1 for 6 h) and re-oxygenation (5.8 ± 0.3 mg·L-1 for 12 h) in T. ovatus liver at both the transcriptomic and metabolic levels to elucidate hypoxia adaptation mechanism. Integrated transcriptomics and metabolomics analyses identified 36 genes and seven metabolites as key molecules that were highly related to signal transduction, cell growth and death, carbohydrate metabolism, amino acid metabolism, and lipid metabolism, and all played key roles in hypoxia adaptation. Of these, the hub genes FOS and JUN were pivotal hypoxia adaptation biomarkers for regulating cell growth and death. During hypoxia, up-regulation of GADD45B and CDKN1A genes induced cell cycle arrest. Enhancing intrinsic and extrinsic pathways in combination with glutathione metabolism triggered apoptosis; meanwhile, anti-apoptosis mechanism was activated after hypoxia. Expression of genes related to glycolysis, gluconeogenesis, amino acid metabolism, fat mobilization, and fatty acid biosynthesis were up-regulated after acute hypoxic stress, promoting energy supply. After re-oxygenation for 12 h, continuous apoptosis favored cellular function and tissue repair. Shifting from anaerobic metabolism (glycolysis) during hypoxia to aerobic metabolism (fatty acid ß-oxidation and TCA cycle) after re-oxygenation was an important energy metabolism adaptation mechanism. Hypoxia 6 h was a critical period for metabolism alteration and cellular homeostasis, and re-oxygenation intervention should be implemented in a timely way. This study thoroughly examined the molecular response mechanism of T. ovatus under acute hypoxic stress, which contributes to the molecular breeding of hypoxia-tolerant cultivars.


Subject(s)
Energy Metabolism , Hypoxia , Animals , Hypoxia/genetics , Gene Expression Profiling , Fishes , Homeostasis , Amino Acids , Fatty Acids
7.
Int J Biol Macromol ; 261(Pt 1): 129744, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38281534

ABSTRACT

Fusarium graminearum is a dominant phytopathogenic fungus causing Fusarium head blight (FHB) in cereal crops. Heat-stable antifungal factor (HSAF) is a polycyclic tetramate macrolactam (PoTeM) isolated from Lysobacter enzymogenes that exhibits strong antifungal activity against F. graminearum. HSAF significantly reduces the DON production and virulence of F. graminearum. Importantly, HSAF exhibited no cross-resistance to carbendazim, phenamacril, tebuconazole and pydiflumetofen. However, the target protein of HSAF in F. graminearum is unclear. In this study, the oxysterol-binding protein FgORP1 was identified as the potential target of HSAF using surface plasmon resonance (SPR) combined with RNA-sequence (RNA-seq). The RNA-seq results showed cell membrane and ergosterol biosynthesis were significantly impacted by HSAF in F. graminearum. Molecular docking showed that HSAF binds with arginine 1205 and glutamic acid 1212, which are located in the oxysterol-binding domain of FgORP1. The two amino acids in FgORP1 are responsible for HSAF resistance in F. graminearum though site-directed mutagenesis. Furthermore, deletion of FgORP1 led to significantly decreased sensitivity to HSAF. Additionally, FgORP1 regulates the mycelial growth, conidiation, DON production, ergosterol biosynthesis and virulence in F. graminearum. Overall, our findings revealed the mode of action of HSAF against F. graminearum, indicating that HSAF is a promising fungicide for controlling FHB.


Subject(s)
Fusarium , Oxysterols , Antifungal Agents/chemistry , Fusarium/physiology , Hot Temperature , Molecular Docking Simulation , Cell Membrane/metabolism , Ergosterol , Plant Diseases/microbiology
8.
Plant Dis ; 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37971893

ABSTRACT

Trichosanthis fructus is one of the most common medicinal plants in China. In September 2022, T. fructus fruit showed black necrotic spots and surface irregularities, with water-soaked lesions (Fig 1). The affected T. fructus fruit (five weeks after blossom) were located in a field in Huai'an Municipality, Jiangsu Province (33.85°N, 119.00°E). The incidence was approximately 50%, causing great losses in fruit production. To isolate the causal agent, two symptomatic fruit from different plants were surface-disinfested with 75% (v/v) ethanol for 1 min, washed three times with sterile distilled water, and cultured on Nutrient agar (NA) plates at 28°C for 24 h. The obtained colonies were light yellow and transferred to fresh NA plates using the conventional repetitive streaking technique to obtain pure cultures. The purified bacterial cells were rod shaped, 1.64 to 2.47 µm long (n = 45), and 0.58 to 0.74 µm wide (n = 45) (Figure S2). Three isolates were used for further characterization. Biochemical tests indicated that the three isolates were Gram negative. DNA was extracted from the three bacterial isolates and used to amplify the16S rRNA (27F/1492R primers) and partial gyrB (UP1/Up2r primers) genes (Marchesi et al. 1998; Yamamoto and Harayama 1995). PCR products were purified using the DNA Clean-up Kit (CW2301, CWBIO), ligated into the PMD-19 vector (6013, Takara), and sequenced by Beijing Tsingke Biotech. The obtained 16S rRNA (GenBank accessions: OQ923996-OQ923998) and gyrB sequences (OR140942-OR140944) showed the best match, over 99%and 98% identity with 100% coverage to the K. cowanii type strain JCM 10956 (CP019445.1). To fulfill Koch's postulates, pathogenicity tests were conducted on healthy T. fructus fruit. T. fructus fruit showed no wounds or lesions, and were surface disinfected with 75% alcohol. The three isolates were grown in nutrient broth at 200 rpm in 28 oC for 24 h and re-suspended in sterilized ddH2O to OD600 = 0.6~1.0 (108~109cfu/mL). Five µL of bacterial suspension was inoculated into the healthy fruit surface with a sterile knife. For the control experiment, the same volume of sterilized ddH2O was used. In each treatment, four healthy T. fructus fruit were treated. All samples were incubated at 25°C and 75% humidity in a plant incubator (Bluepard, MGC-350BP-2). After 12 days, bacterial fruit blotch symptoms were observed in all the inoculated fruit. The pathogen was recovered from the infected fruit, and its identity was confirmed by 16S rRNA/gyrB sequencing and morphological analysis. To further investigate the pathogenicity, four-week-old T. fructus plant leaves were inoculated with the above three isolated suspension (OD600=0.6~1.0) using the leaf cutting method (Kauffman et al. 1973). Sterilized ddH2O was used as mock control. After 10 days, bacterial blight symptoms were observed in all inoculated leaves. To our knowledge, this is the first report of K. cowanii causing fruit blotch on T. fructus worldwide. This species has been previously associated with acute cholecystitis in humans (Berinson et al. 2020; Petrzik et al. 2021), but it was recently identified as the causal agent of bacterial wilt on patchouli, bacterial blight on soybean, and stalk rot in foxtail millet (Han et al. 2023; Krawczyk and Borodynko-Filas 2020; Zhang et al. 2022). China is the largest producer of T. fructus. This report reveals that K. cowanii has a greater host range than was known. This report will help to better understand the pathogens that affects T. fructus production in China.

9.
J Agric Food Chem ; 71(41): 15003-15016, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37812568

ABSTRACT

Heat-stable antifungal factor (HSAF) isolated from Lysobacter enzymogenes is considered a potential biocontrol agent. However, the target of HSAF in phytopathogenic fungi remains unclear. In this study, we investigated the target of HSAF in Valsa pyri that causes fatal pear Valsa canker. Thirty-one HSAF-binding proteins were captured and identified by surface plasmon resonance (SPR) and high-performance liquid chromatography-mass spectrometry (LC-MS/MS), and 11 deletion mutants were obtained. Among these mutants, only ΔVpVEB1 showed decreased sensitivity to HSAF. Additionally, ΔVpVEB1 exhibited significantly reduced virulence in V. pyri. Molecular docking and SPR results revealed that HSAF bound to threonine 569 and glycine 570 of VpVeb1, which are crucial for AAA ATPase activity. Another study showed that HSAF could decrease the ATPase activity of VpVeb1, leading to the reduced virulence of V. pyri. Taken together, this study first identified the potential target of HSAF in fungi. These findings will help us better understand the model of action of HSAF to fungi.


Subject(s)
Antifungal Agents , Bacterial Proteins , Antifungal Agents/pharmacology , Bacterial Proteins/metabolism , Chromatography, Liquid , Molecular Docking Simulation , Tandem Mass Spectrometry , Fungi/metabolism
10.
Microbiol Spectr ; : e0061723, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37737630

ABSTRACT

Heat-stable antifungal factor (HSAF), produced by Lysobacter enzymogenes OH11, is regarded as a potential biological pesticide due to its broad-spectrum antifungal activity and novel mode of action. However, the current production of HSAF is low and cannot meet the requirements for large-scale production. Herein, we discovered that iron ions greatly promoted HSAF production, and the ferric uptake regulator (Fur) was involved in this regulatory process. Fur was also found to participate in the regulation of iron homeostasis in OH11 via the classic inhibition mechanism of Holo-Fur. Furthermore, Fur was collectively observed to directly bind to the promoter of the HSAF biosynthesis gene, and its DNA-binding affinity was attenuated by the addition of iron ions in vitro and in vivo. Its regulatory mechanism followed the uncommon inhibition mechanism of Apo-Fur. In summary, Fur exhibited a bidirectional regulatory mechanism in OH11. This study reveals a novel regulatory mechanism whereby Fur upregulates the biosynthesis of secondary metabolites. These findings contribute to the improvement of HSAF production and may guide its development into biological pesticides. IMPORTANCE HSAF possesses potent and broad antifungal activity with a novel mode of action. The HSAF yield is critical for fermentation production. In this study, iron ions were found to increase HSAF production, and the specific mechanism was elaborated. These results provide theoretical support for genetic transformation to improve HSAF yield, supporting its development into biological pesticides.

11.
Front Microbiol ; 14: 1227244, 2023.
Article in English | MEDLINE | ID: mdl-37645219

ABSTRACT

Heat-stable antifungal factor (HSAF) produced by the biocontrol bacterium Lysobacter enzymogenes shows considerable antifungal activity and has broad application potential in the agricultural and medical fields. There is a great demand for pure HSAF compounds in academic or industrial studies. However, an efficient preparation method that produces a high yield and high purity of HSAF is lacking, limiting the development of HSAF as a new drug. In the present study, high-speed counter-current chromatography (HSCCC) combined with column chromatography was successfully developed for the separation and preparation of HSAF from the crude extract of L. enzymogenes OH11. The crude extract was obtained by macroporous resin adsorption and desorption, and the main impurities were partly removed by ultraviolet light (254 nm) and gel filtration (Sephadex LH-20). In the HSCCC procedure, the selected suitable two-phase solvent system (n-hexane/ethyl acetate/methanol/water = 3:5:4:5, v/v, the lower phase added with 0.1% TFA) with a flow rate of 2.0 mL/min and a sample loading size of 100 mg was optimized for the separation. As a result, a total of 42 mg HSAF with a purity of 97.6% and recovery of 91.7% was yielded in one separation. The structure elucidation based on HR-TOF-MS, 1H and 13C NMR, and antifungal activities revealed that the isolated compound was unambiguously identified as HSAF. These results are helpful for separating and producing HSAF at an industrial scale, and they further demonstrate that HSCCC is a useful tool for isolating bioactive constituents from beneficial microorganisms.

12.
Animals (Basel) ; 13(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37443851

ABSTRACT

Trachinotus ovatus is a major economically important cultured marine fish in the South China Sea. However, extreme weather and increased culture density result in uncontrollable problems, such as increases in water temperature and a decline in dissolved oxygen (DO), hindering the high-quality development of aquaculture. In this study, liver transcriptional profiles of T. ovatus were investigated under acute high-temperature stress (31 °C and 34 °C) and normal water temperature (27 °C) using RNA sequencing (RNA-Seq) technology. Differential expression analysis and STEM analysis showed that 1347 differentially expressed genes (DEGs) and four significant profiles (profiles 0, 3, 4, and 7) were screened, respectively. Of these DEGs, some genes involved in heat shock protein (HSPs), hypoxic adaptation, and glycolysis were up-regulated, while some genes involved in the ubiquitin-proteasome system (UPS) and fatty acid metabolism were down-regulated. Our results suggest that protein dynamic balance and function, hypoxia adaptation, and energy metabolism transformation are crucial in response to acute high-temperature stress. Our findings contribute to understanding the molecular response mechanism of T. ovatus under acute heat stress, which may provide some reference for studying the molecular mechanisms of other fish in response to heat stress.

13.
J Environ Manage ; 342: 118309, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37285772

ABSTRACT

Phasing out thermal power plants is vital to combatting climate change. Less attention has been given to provincial-level thermal power plants, which are implementers of the policy of phasing out backward production capacity. To improve energy efficiency and reduce negative environmental impacts, this study proposes a bottom-up cost-optimal model to explore technology-oriented low-carbon development pathways for China's provincial-level thermal power plants. Taking 16 types of thermal power technologies into consideration, this study investigates the impacts of power demand, policy implementation, and technology maturity on energy consumption, pollutant emissions, and carbon emissions of power plants. The results show that an enhanced policy combined with a reduced thermal power demand would peak carbon emissions of the power industry at approximately 4.1 GtCO2 in 2023. Meanwhile, most of the inefficient coal-fired power technologies should be eliminated by 2030. Carbon capture and storage technology should be gradually promoted in Xinjiang, Inner Mongolia, Ningxia, and Jilin after 2025. Energy-saving upgrades on 600 MW and 1000 MW ultra-supercritical technologies should be emphatically carried out in Anhui, Guangdong, and Zhejiang. By 2050, all thermal power will come from ultra-supercritical and other advanced technologies.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/prevention & control , Air Pollution/analysis , Carbon/analysis , Power Plants , China , Coal , Carbon Dioxide/analysis
14.
Kaohsiung J Med Sci ; 39(7): 652-664, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37042498

ABSTRACT

Acute myocardial infarction (AMI) is the most important cause of death among cardiovascular diseases. Long noncoding RNAs (lncRNAs) have been widely implicated in the regulation of AMI progression. Discrimination antagonizing nonprotein coding RNA (DANCR) alleviated hypoxia-caused cardiomyocyte damages, and the underlying mechanisms remain unclear. Here, we investigated the function and mechanism of DANCR in hypoxia-induced cardiomyocytes and AMI model by enzyme-linked immunosorbent assay, reactive oxygen species and adenosine triphosphate measurement, and mitochondrial activity determination. Additionally, luciferase reporter assay, immunoblotting, and qRT-PCR were performed to validate the interactions between DANCR/miR-509-5p and miR-509-5p/Kruppel-like factor 13 (KLF13). The role of DANCR was also verified in AMI model by overexpression. Our results showed that DANCR expression was significantly downregulated in hypoxia-induced cardiomyocytes or AMI model. Overexpression of DANCR significantly alleviated mitochondrial damages, reduced inflammation, and improved cardiac function in the AMI model. Furthermore, we demonstrated that miR-509-5p/KLF13 axis mediated the protective effect of DANCR. The current study highlighted the critical role of DANCR in alleviating AMI progression through targeting the miR-509-5p/KLF13 signaling axis, suggesting that DANCR may serve as a potential diagnostic marker or therapeutic target for AMI.


Subject(s)
MicroRNAs , Myocardial Infarction , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Apoptosis/genetics , Cell Proliferation/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Hypoxia , Myocardial Infarction/genetics , Transcription Factors
15.
J Environ Manage ; 336: 117624, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36868152

ABSTRACT

To mitigate aviation's carbon emissions of the aviation industry, the following steps are vital: accurately quantifying the carbon emission path by considering uncertainty factors, including transportation demand in the post-COVID-19 pandemic period; identifying gaps between this path and emission reduction targets; and providing mitigation measures. Some mitigation measures that can be employed by China's civil aviation industry include the gradual realization of large-scale production of sustainable aviation fuels and transition to 100% sustainable and low-carbon sources of energy. This study identified the key driving factors of carbon emissions by using the Delphi Method and set scenarios that consider uncertainty, such as aviation development and emission reduction policies. A backpropagation neural network and Monte Carlo simulation were used to quantify the carbon emission path. The study results show that China's civil aviation industry can effectively help the country achieve its carbon peak and carbon neutrality goals. However, to achieve the net-zero carbon emissions goal of global aviation, China needs to reduce its emissions by approximately 82%-91% based on the optimal emission scenario. Thus, under the international net-zero target, China's civil aviation industry will face significant pressure to reduce its emissions. The use of sustainable aviation fuels is the best way to reduce aviation emissions by 2050. Moreover, in addition to the application of sustainable aviation fuel, it will be necessary to develop a new generation of aircraft introducing new materials and upgrading technology, implement additional carbon absorption measures, and make use of carbon trading markets to facilitate China's civil aviation industry's contribution to reduce climate change.


Subject(s)
Aviation , COVID-19 , Humans , Carbon Dioxide/analysis , Uncertainty , Pandemics , COVID-19/prevention & control , Economic Development , China , Carbon/analysis
16.
Mol Plant Pathol ; 24(5): 452-465, 2023 05.
Article in English | MEDLINE | ID: mdl-36829260

ABSTRACT

Avoiding the host defence system is necessary for the survival of pathogens. However, the mechanisms by which pathogenic bacteria sense and resist host defence signals are still unknown. Sulforaphane (SFN) is a secondary metabolite of crucifers. It not only plays an important role in maintaining the local defence response but also directly inhibits the growth of some pathogens. In this study, we identified a key SFN tolerance-related gene, saxF, in Xanthomonas campestris pv. campestris (Xcc), the causal agent of black rot in crucifers. More interestingly, we found that the transcription of saxF was regulated by the novel transcription factor SFN-sensing transcription factor (SstF). As a LysR family transcription factor, SstF can sense SFN and regulate the expression of saxF cluster genes to increase SFN resistance by directly binding to the promoter of saxF. In addition, we found that SstF and saxF also play an important role in positively regulating the virulence of Xcc. Collectively, our results illustrate a previously unknown mechanism by which Xcc senses the host defence signal SFN and activates the expression of SFN tolerance-related genes to increase virulence. Therefore, this study provides a remarkable result; that is, during pathogen-plant co-evolution, new functions of existing scaffolds are activated, thus improving the proficiency of the pathogenic mechanism.


Subject(s)
Transcription Factors , Xanthomonas campestris , Virulence/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Isothiocyanates/pharmacology , Gene Expression Regulation, Bacterial , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Plant Diseases/microbiology
18.
Int J Cardiovasc Imaging ; 38(12): 2801-2809, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36445677

ABSTRACT

The Micra TPS™ (Medtronic) is the first leadless pacemaker listed in China. The best fluoroscopic angle for the intraoperative fixation test is selected according to different implantation sites to reduce the fluoroscopy duration and radiation dose, and the test is based on the early safety and effectiveness of the device after implantation. A total of 110 patients who underwent Micra TPS™ implantation were selected. Eighty patients were in group A, and 30 patients were in group B. Under the guidance of the conclusions from group A, the fluoroscopy duration, radiation dose and number of fluoroscopic positions of the best fluoroscopic angle of the fixation test according to different positions of the implanted interventricular septum were compared. In 85.0% of the group A implants, these angles were based on the right interior oblique (RAO) angle, with 48.5% cranial (CRA) and 29.4% caudal (CAU) angles. The angle of the tilting head side of the RAO angle was prioritized in group B, and referring to the average angle data, the average fluoroscopy duration for finding the best angle of fixation test was 1.7 ± 0.6 vs. 3.2 ± 1.8 min (P < 0.001), the average radiation dose was 270.4 ± 56.3 vs. 338.1 ± 112.9 mGy (P = 0.002), and the average number of fluoroscopic positions was 2.2 ± 0.6 vs. 4.2 ± 2.1 (P < 0.001), which was significantly less than that in group A. This study found that there was regularity in the fluoroscopic angle for the fixation test during Micra TPS™ operation.Level of Evidence Level 3, local nonrandom sample.


Subject(s)
Pacemaker, Artificial , Ventricular Septum , Humans , Predictive Value of Tests , Fluoroscopy , China
19.
J Math Biol ; 85(3): 28, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36098821

ABSTRACT

We propose a mathematical model, namely a reaction-diffusion system, to describe social behaviour of cockroaches. An essential new aspect in our model is that the dispersion behaviour due to overcrowding effect is taken into account as a counterpart to commonly studied aggregation. This consideration leads to an intriguing new phenomenon which has not been observed in the literature. Namely, due to the competition between aggregation towards areas of higher concentration of pheromone and dispersion avoiding overcrowded areas, the cockroaches aggregate more at the transition area of pheromone. Moreover, we also consider the fast reaction limit where the switching rate between active and inactive subpopulations tends to infinity. By utilising improved duality and energy methods, together with the regularisation of heat operator, we prove that the weak solution of the reaction-diffusion system converges to that of a reaction-cross-diffusion system.


Subject(s)
Cockroaches , Animals , Diffusion , Models, Theoretical , Pheromones , Social Behavior
20.
Angew Chem Int Ed Engl ; 61(34): e202206339, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-35735050

ABSTRACT

While structural coloration has captured considerable interests across different areas in the past decades, the development of macroscopic objects with tailorable structural colors remains a challenge due to the difficulty of large-scale fabrication of finely ordered nanostructures and poor processability of their constituent materials. In this work, a type of photonic granular hydrogel is developed as a novel printable ink for constructing customized structural colored objects. The magnetochromatic ink exhibits dynamic properties such as shear thinning and self-healing, enabling direct writing of macroscopic structural colored patterns by extrusion 3D printing. Further, the modularity of the photonic ink allows additive color mixing, which obviates the need for arduous nano-synthesis and expands on the color abundance of structural colored materials in a simple yet efficient manner. These characteristics grant novel photonic inks with great applicability to a variety of fields including switchable color displays, sensors, etc.

SELECTION OF CITATIONS
SEARCH DETAIL
...