Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 15(4)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38674335

ABSTRACT

The starch synthase (SS) plays important roles in regulating plant growth and development and responding to adversity stresses. Although the SS family has been studied in many crops, it has not been fully identified in sweet potato and its two related species. In the present study, eight SSs were identified from Ipomoea batatas (I. batata), Ipomoea trifida (I. trifida), and Ipomoea trlioba (I. trlioba), respectively. According to the phylogenetic relationships, they were divided into five subgroups. The protein properties, chromosomal location, phylogenetic relationships, gene structure, cis-elements in the promoter, and interaction network of these proteins were also analyzed; stress expression patterns were systematically analyzed; and real-time polymerase chain reaction (qRT-PCR) analysis was performed. Ipomoea batatas starch synthase (IbSSs) were highly expressed in tuber roots, especially Ipomoea batatas starch synthase 1 (IbSS1) and Ipomoea batatas starch synthase 6 (IbSS6), which may play an important role in root development and starch biosynthesis. At the same time, the SS genes respond to potassium deficiency, hormones, cold, heat, salt, and drought stress. This study offers fresh perspectives for enhancing knowledge about the roles of SSs and potential genes to enhance productivity, starch levels, and resistance to environmental stresses in sweet potatoes.


Subject(s)
Gene Expression Regulation, Plant , Ipomoea batatas , Phylogeny , Plant Proteins , Starch Synthase , Starch Synthase/genetics , Starch Synthase/metabolism , Ipomoea batatas/genetics , Ipomoea batatas/growth & development , Ipomoea batatas/enzymology , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Multigene Family , Genome, Plant/genetics , Ipomoea/genetics
2.
Genes (Basel) ; 15(2)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38397226

ABSTRACT

The LBD family is a plant-specific transcription factor family that plays an important role in a variety of biological processes. However, the function of IbLBD genes in sweet potato remains unclear. In this study, we identified a total of 53 IbLBD genes in sweet potato. Genetic structure showed that most of the IbLBD genes contained only two exons. Following the phylogenetic investigation, the IbLBD gene family was separated into Class I (45 members) and Class II (8) members. Both classes of proteins contained relatively conservative Motif1 and Motif2 domains. The chromosomal locations, gene duplications, promoters, PPI network, and GO annotation of the sweet potato LBD genes were also investigated. Furthermore, gene expression profiling and real-time quantitative PCR analysis showed that the expression of 12 IbLBD genes altered in six separate tissues and under various abiotic stresses. The IbLBD genes belonging to Class I were mostly expressed in the primary root, the pencil root, and the leaves of sweet potatoes, while the genes belonging to Class II were primarily expressed in the various sweet potato roots. The IbLBD genes belonging to Class I were mostly expressed in the primary root, the pencil root, and the leaves of sweet potatoes, while the genes belonging to Class II were primarily expressed in the fibrous root, pencil root, and tuber root.


Subject(s)
Ipomoea batatas , Ipomoea batatas/genetics , Ipomoea batatas/metabolism , Phylogeny , Stress, Physiological , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Profiling
3.
ESC Heart Fail ; 11(2): 1205-1217, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38288506

ABSTRACT

AIMS: Acute myocardial infarction (MI) is a significant contributor to death in individuals diagnosed with coronary heart disease on a worldwide level. The specific mechanism by which circRbms1 contributes to the damage caused by myocardial ischaemia-reperfusion (I/R) is not well understood. The primary aim of this study was to examine the role of circRbms1 and its associated mechanisms in the setting of I/R injury. METHODS AND RESULTS: An in vivo MI mice model and an in vitro MI cell model was established. The expression levels were detected using quantitative real-time PCR (qRT-PCR) and western blot. Cellular proliferation, apoptosis, pyroptosis, and autophagy were detected by immunostaining, immunohistochemistry, western blot, and transmission electron microscopy (TEM). Dual-luciferase reporter assay, RNA pull-down assay, and RIP assay were performed to validate the molecular interactions. CircRbms1 was up-regulated in A/R-induced HCMs and acted as a sponge for miR-142-3p, thereby targeting MST1. CircRbms1 could improve stability of MST1 by recruiting IGF2BP2 (all P < 0.05). CircRbms1 knockout reduced cell pyroptosis, improved autophagy and proliferation level in A/R-induced HCMs (all P < 0.05). CircRbms1 knockout alleviated cardiac dysfunction and cell pyroptosis and enhanced autophagy and proliferation in mice through the miR-142-3p/MST1 axis. CONCLUSIONS: CircRbms1 inhibited the miR-142-3p/MST1 axis and played a protective role in myocardial I/R injury. It may provide a new therapeutic target for I/R heart injury.


Subject(s)
MicroRNAs , Myocardial Ischemia , Myocardial Reperfusion Injury , Animals , Mice , Autophagy/genetics , MicroRNAs/genetics , Myocardial Reperfusion Injury/genetics , RNA, Messenger
4.
BMC Genomics ; 25(1): 58, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38218763

ABSTRACT

BACKGROUND: Cytochrome P450 monooxygenases (CYP450s) play a crucial role in various biochemical reactions involved in the synthesis of antioxidants, pigments, structural polymers, and defense-related compounds in plants. As sweet potato (Ipomoea batatas L.) holds significant economic importance, a comprehensive analysis of CYP450 genes in this plant species can offer valuable insights into the evolutionary relationships and functional characteristics of these genes. RESULTS: In this study, we successfully identified and categorized 95 CYP450 genes from the sweet potato genome into 5 families and 31 subfamilies. The predicted subcellular localization results indicate that CYP450s are distributed in the cell membrane system. The promoter region of the IbCYP450 genes contains various cis-acting elements related to plant hormones and stress responses. In addition, ten conserved motifs (Motif1-Motif10) have been identified in the IbCYP450 family proteins, with 5 genes lacking introns and only one exon. We observed extensive duplication events within the CYP450 gene family, which may account for its expansion. The gene duplication analysis results showed the presence of 15 pairs of genes with tandem repeats. Interaction network analysis reveals that IbCYP450 families can interact with multiple target genes and there are protein-protein interactions within the family. Transcription factor interaction analysis suggests that IbCYP450 families interact with multiple transcription factors. Furthermore, gene expression analysis revealed tissue-specific expression patterns of CYP450 genes in sweet potatoes, as well as their response to abiotic stress and plant hormones. Notably, quantitative real-time polymerase chain reaction (qRT‒PCR) analysis indicated the involvement of CYP450 genes in the defense response against nonbiological stresses in sweet potatoes. CONCLUSIONS: These findings provide a foundation for further investigations aiming to elucidate the biological functions of CYP450 genes in sweet potatoes.


Subject(s)
Ipomoea batatas , Ipomoea batatas/genetics , Ipomoea batatas/metabolism , Plant Growth Regulators/metabolism , Stress, Physiological/genetics , Transcription Factors/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Gene Expression Regulation, Plant , Phylogeny
5.
Am J Med Sci ; 367(1): 49-60, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37939881

ABSTRACT

BACKGROUND: Myocardial ischemia-reperfusion (I/R), a harmful process in the treatment of cardiovascular diseases, can cause secondary damage to the cardiac tissues. Circular RNAs (circRNAs) are important regulators in a number of cardiac disorders. However, the role of circHDAC9 in myocardial I/R injury has not been clarified. METHODS: Human cardiac myocytes (HCMs) were treated with hypoxia/reoxygenation (H/R) and mice were subjected to I/R. Quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) was used to analyze the expression of circHDAC9, miR-671-5p, and SOX4, and western blot was used to detect SOX4 protein. The binding relationship among circHDAC9, miR-671-5p, and SOX4 was confirmed by RNA pull-down, luciferase, and RNA immunoprecipitation (RIP) assays. The effects of circHDAC9/miR-671-5p/SOX4 axis on the apoptosis, oxidative stress and inflammation were evaluated in both myocardial I/R injury models. RESULTS: The expression of circHDAC9 and SOX4 was noticeably elevated, whereas miR-671-5p expression was downregulated in both myocardial I/R injury models. circHDAC9 knockdown significantly reduced the apoptosis, activities of caspase-3 and caspase-9, ROS intensity, MDA activity, and concentrations of TNF-α, IL-1ß, and IL-6, but increased the viability and SOD activity in H/R-treated HCMs. Suppression of circHDAC9 dramatically reduced the levels of circHDAC9 and SOX4, while enhanced miR-671-5p expression in H/R-treated HCMs. CircHDAC9 functioned via sponging miR-671-5p to regulate SOX4 expression in vitro. Additionally, silencing of circHDAC9 improved the pathological abnormalities and cardiac dysfunction, and reduced the apoptosis, oxidative stress and inflammation in mice with myocardial I/R injury. CONCLUSIONS: Inhibition of circHDAC9 significantly improved myocardial I/R injury by regulating miR-671-5p/SOX4 signaling pathway.


Subject(s)
MicroRNAs , Myocardial Reperfusion Injury , RNA, Circular , Animals , Humans , Mice , Apoptosis , Inflammation/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/pathology , Signal Transduction , SOXC Transcription Factors/genetics , SOXC Transcription Factors/metabolism , SOXC Transcription Factors/pharmacology , RNA, Circular/metabolism
6.
Int J Mol Sci ; 24(23)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38068872

ABSTRACT

Malate dehydrogenase (MDH; EC 1.1.1.37) plays a vital role in plant growth and development as well as abiotic stress responses, and it is widely present in plants. However, the MDH family genes have not been explored in sweet potato. In this study, nine, ten, and ten MDH genes in sweet potato (Ipomoea batatas) and its two diploid wild relatives, Ipomoea trifida and Ipomoea triloba, respectively, were identified. These MDH genes were unevenly distributed on seven different chromosomes among the three species. The gene duplications and nucleotide substitution analysis (Ka/Ks) revealed that the MDH genes went through segmental duplications during their evolution under purifying selection. A phylogenetic and conserved structure divided these MDH genes into five subgroups. An expression analysis indicated that the MDH genes were omni-presently expressed in distinct tissues and responded to various abiotic stresses. A transcription factor prediction analysis proved that Dof, MADS-box, and MYB were the main transcription factors of sweet potato MDH genes. These findings provide molecular features of the MDH family in sweet potato and its two diploid wild relatives, which further supports functional characterizations.


Subject(s)
Ipomoea batatas , Ipomoea , Ipomoea batatas/metabolism , Phylogeny , Diploidy , Malate Dehydrogenase/genetics , Malate Dehydrogenase/metabolism , Ipomoea/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant
SELECTION OF CITATIONS
SEARCH DETAIL
...