Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Physiol ; 108(7): 961-974, 2023 07.
Article in English | MEDLINE | ID: mdl-37139700

ABSTRACT

NEW FINDINGS: What is the central question of this study? Is there a risk of developing diabetes associated with statin treatment? What is the underlying mechanism of the increased incidence rate of new-onset diabetes in patients treated with rosuvastatin? What is the main finding and its importance? Rosuvastatin therapy reduced intraperitoneal glucose tolerance and changed the catabolism of branched-chain amino acid (BCAAs) in white adipose tissue and skeletal muscle. Protein phosphatase 2Cm knockdown completely abolished the effects of insulin and rosuvastatin on glucose absorption. This study provides mechanistic support for recent clinical data on rosuvastatin-related new-onset diabetes and underscores the logic for intervening in BCAA catabolism to prevent the harmful effects of rosuvastatin. ABSTRACT: Accumulating evidence indicates that patients treated with rosuvastatin have an increased risk of developing new-onset diabetes. However, the underlying mechanism remains unclear. In this study, we administered rosuvastatin (10 mg/kg body weight) to male C57BL/6J mice for 12 weeks and found that oral rosuvastatin dramatically reduced intraperitoneal glucose tolerance. Rosuvastatin-treated mice showed considerably higher serum levels of branched-chain amino acids (BCAAs) than control mice. They also showed dramatically altered expression of BCAA catabolism-related enzymes in white adipose tissue and skeletal muscle, including downregulated mRNA expression of BCAT2 and protein phosphatase 2Cm (PP2Cm) and upregulated mRNA expression of branched-chain ketoacid dehydrogenase kinase (BCKDK). The levels of BCKD in the skeletal muscle were reduced in rosuvastatin-treated mice, which was associated with lower PP2Cm protein levels and increased BCKDK levels. We also investigated the effects of rosuvastatin and insulin administration on glucose metabolism and BCAA catabolism in C2C12 myoblasts. We observed that incubation with insulin enhanced glucose uptake and facilitated BCAA catabolism in C2C12 cells, which was accompanied by elevated Akt and glycogen synthase kinase 3 ß (GSK3ß) phosphorylation. These effects of insulin were prevented by co-incubation of the cells with 25 µM rosuvastatin. Moreover, the effects of insulin and rosuvastatin administration on glucose uptake and Akt and GSK3ß signaling in C2C12 cells were abolished when PP2Cm was knocked down. Although the relevance of these data, obtained with high doses of rosuvastatin in mice, to therapeutic doses in humans remains to be elucidated, this study highlights a potential mechanism for the diabetogenic effects of rosuvastatin, and suggests that BCAA catabolism could be a pharmacological target for preventing the adverse effects of rosuvastatin.


Subject(s)
Diabetes Mellitus , Insulin Resistance , Animals , Male , Mice , Amino Acids, Branched-Chain/metabolism , Glucose , Glycogen Synthase Kinase 3 beta , Insulin , Mice, Inbred C57BL , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , Proto-Oncogene Proteins c-akt , RNA, Messenger , Rosuvastatin Calcium/adverse effects
2.
Molecules ; 26(9)2021 May 02.
Article in English | MEDLINE | ID: mdl-34063301

ABSTRACT

Amomum Villosum Lour. (A. villosum) is a folk medicine that has been used for more than 1300 years. However, study of the polysaccharides of A. villosum is seriously neglected. The objectives of this study are to explore the structural characteristics of polysaccharides from A. villosum (AVPs) and their effects on immune cells. In this study, the acidic polysaccharides (AVPG-1 and AVPG-2) were isolated from AVPs and purified via anion exchange and gel filtration chromatography. The structural characteristics of the polysaccharides were characterized by methylation, HPSEC-MALLS-RID, HPLC, FT-IR, SEM, GC-MS and NMR techniques. AVPG-1 with a molecular weight of 514 kDa had the backbone of → 4)-α-d-Glcp-(1 → 3,4)-ß-d-Glcp-(1 → 4)-α-d-Glcp-(1 →. AVPG-2 with a higher molecular weight (14800 kDa) comprised a backbone of → 4)-α-d-Glcp-(1 → 3,6)-ß-d-Galp-(1 → 4)-α-d-Glcp-(1 →. RAW 264.7 cells were used to investigate the potential effect of AVPG-1 and AVPG-2 on macrophages, and lipopolysaccharide (LPS) was used as a positive control. The results from bioassays showed that AVPG-2 exhibited stronger immunomodulatory activity than AVPG-1. AVPG-2 significantly induced nitric oxide (NO) production as well as the release of interleukin (IL)-6 and tumor necrosis factor alpha (TNF-α), and upregulated phagocytic capacities of RAW 264.7 cells. Real-time PCR analysis revealed that AVPG-2 was able to turn the polarization of macrophages to the M1 direction. These results suggested that AVPs could be explored as potential immunomodulatory agents of the functional foods or complementary medicine.


Subject(s)
Amomum/chemistry , Polysaccharides/chemistry , Polysaccharides/metabolism , Animals , Cell Survival , Chromatography, High Pressure Liquid , Cytokines/metabolism , Ethanol , Immunologic Factors , Immunomodulation/drug effects , Lipopolysaccharides/chemistry , Macrophages/metabolism , Magnetic Resonance Spectroscopy , Mice , Microscopy, Electron, Scanning , Molecular Weight , Nitric Oxide/chemistry , Phagocytosis , RAW 264.7 Cells , Spectroscopy, Fourier Transform Infrared , Surface Properties
3.
Microbiol Res ; 242: 126608, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33068829

ABSTRACT

Amomum villosum Lour (A. villosum Lour) has medicinal properties and has been widely used in China for many years. Herein we aimed to investigate the antibacterial mechanism and the metabolome variation caused by A. villosum Lour essential oil (EO) in methicillin-resistant Staphylococcus aureus (MRSA). The metabolite profile of MRSA was acquired, and metabolic pathways were assessed for significant alterations caused upon treating bacterial cells with EO, the antibacterial mechanism of EO was further investigated in combination with multiple experiments. Metabolomics analysis revealed that 72 metabolites and 10 pathways were significantly affected. EO specifically disrupted amino acid metabolism and the tricarboxylic acid (TCA) cycle, and also inhibited adenosine triphosphate (ATP) and reactive oxygen species (ROS) synthesis. Furthermore, the activities of pivotal enzymes involved in the TCA cycle were suppressed. Increased ROS levels could decrease the sensitivity of MRSA to EO, improving the survival of EO-treated MRSA cells. Our data indicate that A. villosum Lour EO causes metabolic dysfunction in MRSA, leading to reduced ROS levels, disruption of the TCA cycle, inhibition of ATP synthesis, and suppression of the activities of key enzymes.


Subject(s)
Amomum/chemistry , Anti-Bacterial Agents/pharmacology , Gas Chromatography-Mass Spectrometry/methods , Metabolomics/methods , Methicillin-Resistant Staphylococcus aureus/drug effects , Oils, Volatile/pharmacology , Adenosine Triphosphate/metabolism , Biomarkers , China , Metabolic Networks and Pathways/drug effects , Metabolome/drug effects , Microbial Sensitivity Tests , Reactive Oxygen Species/metabolism
4.
Molecules ; 25(20)2020 Oct 19.
Article in English | MEDLINE | ID: mdl-33086631

ABSTRACT

Cinnamomum camphora (Linn.) Presl has been widely used in traditional Chinese medicine for a variety of purposes. Our previous study indicated the antibacterial mechanism of the essential oil (EO) from C. camphora leaves; however, its anti-inflammatory activity and the underlying mechanism have not been clearly demonstrated. Thus, the present study investigated its anti-inflammatory property. Our data revealed that EO significantly decreased the release of nitric oxide (NO) and the mRNA expression of inducible NO synthase (iNOS) in lipopolysaccharide (LPS)-induced BV2 microglial cells. EO also attenuated LPS-induced increase in the mRNA expression and secretion of inflammatory cytokines including interleukin-6 (IL-6), IL-18, IL-1ß and tumor necrosis factor-α (TNF-α). Furthermore, the metabolic profiles of LPS-induced BV2 microglial cells treated with or without EO were explored. Thirty-nine metabolites were identified with significantly different contents, including 21 upregulated and 18 downregulated ones. Five pathways were enriched by shared differential metabolites. Compared with the control cells, the glucose level was decreased, while the lactate level was increased, in the culture supernatant from LPS-stimulated cells, which were reversed by EO treatment. Moreover, compared to the LPS-treated group, the activities of phosphofructokinase (PFK) and pyruvate kinase (PK) in EO group were decreased. In summary, the current study demonstrated that EO from C. camphora leaves acts as an anti-inflammatory agent, which might be mediated through attenuating the glycolysis capacity of microglial cells.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cinnamomum camphora/chemistry , Inflammation/drug therapy , Metabolomics , Anti-Inflammatory Agents/chemistry , Gene Expression Regulation/drug effects , Humans , Inflammation/chemically induced , Lipopolysaccharides/toxicity , Microglia/drug effects , Nitric Oxide/genetics , Nitric Oxide Synthase Type II/genetics , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Plant Leaves/chemistry
5.
Int J Med Microbiol ; 310(5): 151435, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32654773

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is one of the important causes of food poisoning and infectious diseases worldwide, it can produce a large number of virulence factors, enhance the colonization ability of the host so that it can quickly colonize and spread on the surface of the objects. Essential oil (EO) is one of the natural products with antimicrobial properties, can be used as an important source of antibacterial agent discovery, and has a broad development prospect. However, the unclear mechanisms of antibacterial action have become an obstacle to its further development and use. Hence, the objective of the present study was to reveal the antibacterial mechanism of EO from Amomum villosum Lour (A villosum Lour) against MRSA using label-free quantitative proteomics, investigate the effect of EO on the bacterial proteome, enzymatic activities and leakage of bacterial intracellular biomacromolecule. Proteomic analysis of MRSA in the presence of EO found that a total of 144 differential expressed proteins (DEPs) between the control and treatment group, in which 42 proteins were distinctly up-regulated and 102 proteins were down-regulated. Besides, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, determination of cell membrane permeability and apoptosis, scanning electron microscopy (SEM) observations, bacterial surface hydrophobicity, and biofilm formation measurement were performed. Collectively, the above results indicated that the cell membrane damage by EO leads to the loss of membrane integrity and causes leakage of intracellular macromolecular substances, inhibition of protein, and biofilm synthesis. These findings manifested that EO exerts antibacterial effect by multiple avenues and expands our understanding of the antibacterial mechanism, it has potential application value in food preservative and pharmaceutical industries.


Subject(s)
Apoptosis/drug effects , Bacterial Proteins/metabolism , Biofilms/drug effects , Cell Membrane Permeability/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/metabolism , Oils, Volatile/pharmacology , Amomum/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Biosynthetic Pathways , Methicillin-Resistant Staphylococcus aureus/ultrastructure , Microscopy, Electron, Scanning , Oils, Volatile/chemistry , Proteome
6.
Biochem Biophys Res Commun ; 525(4): 863-869, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32171522

ABSTRACT

Evidences suggest that dietary docosahexaenoic acid (DHA) supplementation may have pleiotropic beneficial effects on health. However, the underlying mechanisms and crucial targets that are involved in achieving these benefits remain to be clarified. In this study, we employed biochemical analysis and liquid chromatography-mass spectrometry (LC-MS) based untargeted metabolomics coupled with multivariate statistical analysis to identify potential metabolic targets of DHA in adult rats at 48 h post-feeding. Blood biochemical analysis showed a significant decrease in triglyceride level of DHA diet group, the untargeted metabolomic analysis revealed that some metabolites were significantly different between the DHA diet group and the basal diet group, including fatty acids (16:0, 18:1, 20:5n3, 22:2n6 and 24:0), diglyceride (20:0/18:2n6, 18:3n6/22:6n3, 20:4n3/20:4n3, and 22:0/24:0), PIP2 (18:2/20:3), phytol, lysoSM (d18:1), 12-hydroxyheptadecatrienoic acid, dihydrocorticosterone and N1-acetylspermine, which are mainly involved in fat mobilization and triglyceride hydrolysis, arachidonic acid, steroid hormone, and polyamine metabolism. To our knowledge, this is the first report that links the metabolic effects of DHA with arachidonic acid, steroid, and polyamine metabolism. Our finding suggests that the beneficial effects of DHA, may not directly require its own metabolic derivatives, but could be achieved by metabolic regulation.


Subject(s)
Arachidonic Acid/blood , Docosahexaenoic Acids/metabolism , Docosahexaenoic Acids/pharmacology , Triglycerides/blood , Animals , Blood Chemical Analysis , Chromatography, Liquid , Dietary Supplements , Docosahexaenoic Acids/blood , Least-Squares Analysis , Mass Spectrometry/statistics & numerical data , Polyamines/blood , Rats , Reproducibility of Results
7.
J Ethnopharmacol ; 253: 112652, 2020 May 10.
Article in English | MEDLINE | ID: mdl-32035880

ABSTRACT

ETHNOPHARMACOLOGY RELEVANCE: Cinnamomum camphora (Linn.) Presl (C. camphora) is one of the oldest herbal medicines used as a traditional medicine, owning a wide range of biological functions including anti-bacterial, anti-oxidative, anti-fungal, anti-inflammatory, insecticidal and repellent activities. OBJECTIVE: The aim of this study was to investigate the antibacterial activity and mechanism of action of the essential oil (EO) from C. camphora. MATERIALS AND METHODS: The EO was isolated from the leaves of C. camphora by hydrodistillation, and the chemical compositions of the EO were analyzed by gas chromatography-mass spectrometry (GC-MS). The minimum inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC) values of the EO were estimated by the microbroth dilution method. Growth curve was investigated by turbidimetry. Apoptosis was measured by flow cytometry. Morphological change of bacteria was observed by field emission scanning electron microscopy and transmission electron microscopy. The integrity of cell membrane was evaluated by NanoDrop and BCA Protein Assay Kit. The methicillin-resistant Staphylococcus aureus (MRSA) metabolic profile in the presence of the EO was explored by GC-MS-based metabolomics. Isocitrate dehydrogenase (ICDH), α-ketoglutarate dehydrogenase (α-KGDH), succinic dehydrogenase (SDH) and malic dehydrogenase (MDH) activities were detected by commercial kits. RESULTS: The main components of the EO from the leaves of C. camphora were identified to be linalool (26.6%), eucalyptol (16.8%), α-terpineol (8.7%), isoborneol (8.1%), ß-phellandrene (5.1%), and camphor (5.0%). The EO had good activity against MRSA, Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis, Salmonella gallinarum and Escherichia coli. MRSA was selected as the model bacterium to illustrate antibacterial mechanism of action of the EO, and the MIC and MBC values was 0.8 and 1.6 mg/mL, respectively. Apoptosis rate of MRSA increased in a concentration-dependent manner after the addition of EO. The cell morphology was damaged by the EO. There were 74 significantly different metabolites, including 29 upregulated and 45 downregulated metabolites in the result of metabolomics evaluation. Seven pathways were enriched by shared differential metabolites. The EO enhanced the activity of ICDH by 47.35%, while weaken MDH, SDH and α-KGDH by 72.63%, 31.52% and 63.29%, respectively. CONCLUSIONS: The EO from C. camphora showed anti-MRSA activity via damaging cell membranes and disturbing the amino metabolism.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cinnamomum camphora , Oils, Volatile/pharmacology , Bacteria/drug effects , Bacteria/growth & development , Bacteria/metabolism , Bacteria/ultrastructure , Metabolomics , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Oils, Volatile/chemistry , Phytochemicals/analysis , Phytochemicals/pharmacology , Plant Leaves
8.
Biomed Pharmacother ; 115: 108813, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31054505

ABSTRACT

Our objective was to investigate whether a thermostable protein fraction (TPF) obtained from the larvae of Musca domestica, which contains cecropin family AMPs, is effective in treating senna leaf (Folium Sennae)-induced diarrhea in mice and its possible underlying mechanism. We did the experiments both in vitro and in vivo. Firstly, lipopolysaccharide (LPS) was used to induce inflammation in RAW 264.7 macrophages. The expression level of nitric oxide (NO) and tumor necrosis factor (TNF)-α was assessed using kits and immunofluorescence assay. A mice model of total diarrhea was established using a decoction of Folium Sennae. Levels of interleukin (IL)-6 and IL-1ß in mice serum and of TNF-α in the supernatant of jejunal tissue homogenate were measured using commercially available ELISA kits. Hematoxylin-eosin staining was employed to evaluate pathological lesions, and immunohistochemistry was used for determining IL-1ß, IL-6, and TNF-α expression levels. Results display that TPF markedly inhibited NO and TNF-α production in LPS-stimulated RAW 264.7 macrophages in vitro. Moreover, TPF significantly lowered the diarrhea index (DI) in diarrheic mice; when TPF was administered at a high dose (120 mg/kg) to mice, in comparison with mice in the model group, DI was markedly reduced. TPF could also decrease the expression levels of some pro-inflammatory factors, high dose TPF treated mice were with the reduction of (202.29 ± 18.58) pg/ml (tumor necrosis factor alpha, TNF-α), (53.69 ± 7.83) pg/ml (interleukin (IL)-1ß, IL-1ß), (48.44 ± 3.77) pg/ml (IL-6I, L-6) to the model separately. In comparison with berberine hydrochloride, which was used as the positive control in this study, TPF could confer better intestinal protection. To conclude, our results demonstrate that TPF has potent anti-inflammatory activities in vitro and antidiarrheal effects on mice with Folium Sennae-induced diarrhea.


Subject(s)
Antidiarrheals/pharmacology , Diarrhea/chemically induced , Houseflies/chemistry , Insect Proteins/pharmacology , Animals , Antidiarrheals/chemistry , Diarrhea/drug therapy , Gene Expression Regulation/drug effects , Hot Temperature , Insect Proteins/chemistry , Intestine, Small/drug effects , Larva/chemistry , Lipopolysaccharides/toxicity , Mice , Nitric Oxide/metabolism , Protein Stability , RAW 264.7 Cells , Tumor Necrosis Factor-alpha/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...