Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 63(4): 2157-2173, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38206809

ABSTRACT

It is an important strategy to design composite materials with a special microstructure and a tunable electronic structure through structural compatibility. In this work, a novel hexagonal/cubic ZnIn2S4 polymorphic heterophase junction with a three-dimensional multihierarchical structure is successfully constructed by in situ growth of hexagonal ZnIn2S4 nanosheets on the surface of cubic ZnIn2S4 flower-like microspheres prepared by topological chemical synthesis. On the one hand, the multihierarchical architecture provides large specific surface area, abundant active sites, and excellent light trapping capability. On the other hand, the construction of a direct S-scheme heterophase junction enables the formation of a special charge-transfer channel under the force of a built-in electric field, which not only improves the separation efficiency of carriers but also ensures the stronger reaction activity of charges. The prepared ZnIn2S4 heterophase junction composite photocatalyst exhibits greatly boosted photocatalytic efficiency in rhodamine B degradation, hexavalent chromium reduction, and water splitting for hydrogen production, which are 12.3, 6.5, and 3.1 times higher than that of pure hexagonal ZnIn2S4 and 8.1, 5.1, and 2.3 times higher than that of pure cubic ZnIn2S4, respectively, demonstrating its significant potential for applications in energy and environmental fields.

2.
J Colloid Interface Sci ; 648: 181-192, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37301143

ABSTRACT

To develop ideal alternatives to noble metal catalysts, transition metal catalysts supported on graphene have been receiving extensive attention in the field of electrochemical energy. In this work, using graphene oxide (GO) and nickel formate as precursors, Ni/NiO synergistic nanoparticles with regulable composition are anchored on reduced graphene oxide (RGO) to prepare Ni/NiO/RGO composite electrocatalysts through in-situ autoredox. Thanks to the synergistic effect of Ni3+ active sites and Ni electron donors, the as-prepared Ni/NiO/RGO catalysts exhibit efficient electrocatalytic oxygen evolution performance in 1.0 M KOH electrolyte. The optimal sample has an overpotential of only 275 mV at a current density of 10 mA cm-2 and a small Tafel slope of 90 mV dec-1, which are very comparable to those of commercial RuO2 catalyst. Additionally, the catalytic capacity and structure remain stable after 2000 cyclic voltammetry cycles. For the electrolytic cell assembled with the best-performing sample as anode and commercial Pt/C as cathode, the current density can reach 10 mA cm-2 at a low potential of 1.57 V and remains stable after 30 h of continuous work. It would be expected that the as-developed Ni/NiO/RGO catalyst with high activity should have broad application prospects.

3.
Inorg Chem ; 62(1): 543-556, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36534974

ABSTRACT

The widespread application of dyes and heavy metals causes increasing environmental pollution. One effective way to mitigate environmental pollution is to use semiconductor photocatalysts for redox purification of pollutants. Heterostructured photocatalysts can reduce the electron-hole recombination rate and improve light utilization. In this work, a novel SnO2/In3-xS4 composite with oxygen vacancy defect-mediated Z-scheme heterostructure is constructed for the first time by a one-pot method, in which SnO2 ultrasmall nanocrystals are decorated on nanopetals of flower-like In3-xS4. Material analyses show that the as-built three-dimensional hierarchical architecture is able to essentially increase the specific surface area and thus the active sites of the products. More importantly, the formation of Z-scheme heterojunction between the oxygen vacancy-induced SnO2 defect level and the In3-xS4 band structure not only promotes the separation of photogenerated charges but also makes them more reactive. Through the optimization of the composition ratio between the two phases, the visible-light-driven photocatalytic reaction rates of rhodamine B degradation and Cr(VI) reduction for the developed SnO2/In3-xS4 composite photocatalyst are 12.8 and 6.3 times of bare In3-xS4 and 32.0 and 76.0 times of bare SnO2, respectively. This work should provide a promising implication for designing new high-performance composite photocatalysts.

4.
Dalton Trans ; 51(30): 11416-11426, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35822345

ABSTRACT

Multifunctional multinary metal chalcogenides have long been a research hotspot in the field of materials chemistry due to their rich composition, flexible structure, excellent properties and wide range of applications. However, the exploration of complex quinary chalcogenides is still challenging. In this work, for the first time, we have developed the controlled synthesis of quinary Cu3NiInSnS6 nanocrystals, realizing the selective preparation of hexagonal wurtzite and cubic zinc blende metastable phases by simply tuning the sulfur source. The phase structure analysis reveals that both metastable phases possess a disordered structure with a random distribution of metal atoms in the unit cells. The fabricated wurtzite and zinc blende-structure Cu3NiInSnS6 nanocrystals have a direct band gap of 1.82 and 1.94 eV, respectively, and both exhibit superparamagnetic behavior at low temperatures. This work is of great significance for the development of novel multifunctional materials based on metastable multinary metal chalcogenide phases.

5.
J Colloid Interface Sci ; 616: 401-412, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35220187

ABSTRACT

Two-dimensional (2D) layered materials hold great promise for electrochemical energy storage due to their unique structure. It is always desirable to explore new-type high-performance 2D structured electrode materials in energy field. In this work, layered transition-metal chalcogenophosphite is developed as the electrode material for supercapacitors for the first time. NiPS3 nanosheet arrays are successfully in-situ grown on carbon cloth via a chemical vapor deposition method, and then directly used as the self-supported electrode for supercapacitors. The fabricated carbon cloth supported NiPS3 nanosheet arrays offer obviously superior electrochemical performance to the powdery NiPS3 nanosheets sample. The self-supported NiPS3 electrode exhibits a high specific capacitance of 1148F g-1 at a current density of 1 A g-1, and a good cycling stability with capacitance retention of 81.4% over 5000 cycles at 10 A g-1. Moreover, the assembled asymmetric supercapacitor device delivers a specific capacitance of 61.3F g-1 at a current density of 1 A g-1, and an energy density of 19.2 Wh kg-1 at a power density of 750 W kg-1 with a voltage window of 1.5 V. This work is of great significance for pioneering the application of 2D transition-metal chalcogenophosphites in supercapacitors.

6.
J Environ Sci (China) ; 88: 81-89, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31862082

ABSTRACT

Eichhornia crassipes is a hyperaccumulator of metals and has been widely used to remove metal pollutants from water, but disposal of contaminated plants is problematic. Biochar prepared from plants is commonly used to remediate soils and sequester carbon. Here, the catalytic activity of biochar prepared from plants enriched with iron was investigated as a potentially beneficial use of metal-contaminated plants. In a 30-day hydroponic experiment, E. crassipes was exposed to different concentrations of Fe(III) (0, 4, 8, 16, 32 and 64 mg/L), and Fe-biochar (Fe-BC) was prepared by pyrolysis of the plant roots. The biochar was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), Brunauer-Emmett-Teller (BET) analysis, X-ray photoelectron spectroscopy (XPS) and atomic absorption spectrometry (AAS). The original root morphology was visible and iron was present as γ-Fe2O3 and Fe3O4. The biochar enriched with Fe(III) at 8 mg/L (8-Fe-BC) had the smallest specific surface area (SSA, 13.54 m2/g) and the highest Fe content (27.9 mg/g). Fe-BC catalytic activity was tested in the electrocatalytic reduction of H2O2 using cyclic voltammetry (CV). The largest reduction current (1.82 mA/cm2) was displayed by 8-Fe-BC, indicating the highest potential catalytic activity. We report here, for the first time, on the catalytic activity of biochar made from iron-enriched plants and demonstrate the potential for reusing metal-contaminated plants to produce a biochar catalyst.


Subject(s)
Charcoal/chemistry , Iron , Water Pollutants, Chemical , Hydrogen Peroxide
7.
Environ Sci Technol ; 52(11): 6426-6437, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29697970

ABSTRACT

Six naturally occurring minerals were employed to catalyze the hydrolysis of microcystin-LR (MC-LR) in water. After preliminary screening experiments, siderite stood out among these minerals due to its higher activity and selectivity. In comparison with kaolinite, which is known to act as a Lewis acid catalyst, siderite was found to act primarily as a Brönsted acid catalyst in the hydrolysis of MC-LR. More interestingly, we found that the presence of humic acid significantly inhibited catalytic efficiency of kaolinite, while the efficiency of siderite remained high (∼98%). Reaction intermediates detected by LC-ESI/MS were used to indicate cleavage points in the macrocyclic ring of MC-LR, and XPS was used to characterize siderite interaction with MC-LR. Detailed analysis of the in situ ATR-FTIR absorption spectra of MC-LR indicated hydrogen bonding at the siderite-water-MC-LR interface. A metastable ring, involving hydrogen bonding, between surface bicarbonate of siderite and an amide of MC-LR was proposed to explain the higher activity and selectivity toward MC-LR. Furthermore, siderite was found to reduce the toxicity of MC-LR to mice by hydrolyzing MC-LR peptide bonds. The study demonstrates the potential of siderite, an earth-abundant and biocompatible mineral, for removing MC-LR from water.


Subject(s)
Water Pollutants, Chemical , Water Purification , Animals , Carbonates , Catalysis , Ferric Compounds , Hydrolysis , Marine Toxins , Mice , Microcystins , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...