Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-34447455

ABSTRACT

METHODS: A total of 787 nursing staff in a tertiary referral center in Changsha City, Hunan Province, were selected using a convenient sampling method. We used an online questionnaire designed by ourselves to survey them. The content of the questionnaire primary included basic information, related knowledge of the nursing staff on the potential risk prediction and precontrol of inpatients with "three infarcts and one hemorrhage," relevant information on improving early warning scores, management of clinical early warning, training needs, and training methods. RESULTS: Over 50% of the nursing staff had little understanding about the risk warning knowledge of inpatients with "three infracts and one hemorrhage," and the degree of understanding was related to education, job title, and working years. The nursing staff with higher education level or professional title or longer working experience have a better understanding of the risk warning knowledge of inpatients with "three infracts and one hemorrhage." CONCLUSION: The cognitive competence of nursing staff in a tertiary referral center in Changsha City, Hunan Province, on the early warning ability of inpatients with "three infarcts and one hemorrhage" needs to be improved. Medical institutions should actively train nursing staff on early warning ability for inpatients with "three infarcts and one hemorrhage" to improve the nursing staff's awareness and patients' safety and efficiency.

2.
Plant Mol Biol ; 105(4-5): 419-434, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33231834

ABSTRACT

KEY MESSAGE: A novel MADS-box member SiMADS34 is essential for regulating inflorescence architecture and grain yield in Setaria italica. MADS-box transcription factors participate in regulating various developmental processes in plants. Inflorescence architecture is one of the most important agronomic traits and is closely associated with grain yield in most staple crops. Here, we isolated a panicle development mutant simads34 from a foxtail millet (Setaria italica (L.) P. Beauv.) EMS mutant library. The mutant showed significantly altered inflorescence architecture and decreased grain yield. Investigation of agronomic traits revealed increased panicle width by 16.8%, primary branch length by 10%, and number of primary branches by 30.9%, but reduced panicle length by 25.2%, and grain weight by 25.5% in simads34 compared with wild-type plants. Genetic analysis of a simads34 × SSR41 F2 population indicated that the simads34 phenotype was controlled by a recessive gene. Map-based cloning and bulked-segregant analysis sequencing demonstrated that a single G-to-A transition in the fifth intron of SiMADS34 in the mutant led to an alternative splicing event and caused an early termination codon in this causal gene. SiMADS34 mRNA was expressed in all of the tissues tested, with high expression levels at the heading and panicle development stages. Subcellular localization analysis showed that simads34 predominantly accumulated in the nucleus. Transcriptome sequencing identified 241 differentially expressed genes related to inflorescence development, cell expansion, cell division, meristem growth and peroxide stress in simads34. Notably, an SPL14-MADS34-RCN pathway was validated through both RNA-seq and qPCR tests, indicating the putative molecular mechanisms regulating inflorescence development by SiMADS34. Our study identified a novel MADS-box member in foxtail millet and provided a useful genetic resource for inflorescence architecture and grain yield research.


Subject(s)
Edible Grain/genetics , Inflorescence/genetics , MADS Domain Proteins/genetics , Plant Proteins/genetics , Setaria Plant/genetics , Transcription Factors/genetics , Amino Acid Sequence , Chromosome Mapping , Chromosomes, Plant/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , High-Throughput Nucleotide Sequencing/methods , Inflorescence/anatomy & histology , Inflorescence/growth & development , MADS Domain Proteins/chemistry , MADS Domain Proteins/classification , Mutation , Phenotype , Phylogeny , Plant Proteins/chemistry , Plant Proteins/classification , Polymorphism, Single Nucleotide , Protein Domains , Sequence Homology, Amino Acid , Transcription Factors/chemistry , Transcription Factors/classification
3.
J Exp Bot ; 70(4): 1167-1182, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30534992

ABSTRACT

The activity of ribonucleotide reductase (RNR), which catalyses the transformation of four ribonucleoside diphosphates (NDPs) to their corresponding deoxyribonucleoside diphosphates (dNDPs), is the main determiner of the cellular concentration of dNTP pools and should be tightly coordinated with DNA synthesis and cell-cycle progression. Constitutively increased or decreased RNR activity interferes with DNA replication and leads to arrested cell cycle progression; however, the mechanisms underlying these disruptive effects in higher plants remain to be uncovered. In this study, we identified a RNR large subunit mutant, sistl1, in Setaria italica (foxtail millet), which exhibited growth retardation as well as striped leaf phenotype, i.e. irregularly reduced leaf vein distances and decreased chloroplast biogenesis. We determined that a Gly737 to Glu substitution occurring in the C-terminus of the SiSTL1 protein slightly affected its optimal function, leading in turn to the reduced expression of genes variously involved in the assembly and activation of the DNA pre-replicative complex, elongation of replication forks and S phase entry. Our study provides new insights into how SiSTL1 regulates plant growth, chloroplast biogenesis, and cell cycle progression in Poaceae crops.


Subject(s)
Cell Cycle/physiology , Chloroplasts/physiology , Organogenesis, Plant , Plant Proteins/genetics , Ribonucleotide Reductases/genetics , Setaria Plant/physiology , Amino Acid Sequence , Base Sequence , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Ribonucleotide Reductases/metabolism , Sequence Alignment , Setaria Plant/growth & development
4.
Front Plant Sci ; 9: 1650, 2018.
Article in English | MEDLINE | ID: mdl-30487807

ABSTRACT

C4 plants exhibit significantly higher photosynthetic, water and nutrient use efficiency compared with C3 plants. Kranz anatomy is associated with many C4 plants in which bundle sheath cells surround the veins and are themselves surrounded by mesophyll cells. This specialized Kranz anatomy is elucidated as an important contributor to C4 photosynthetic activities in C4 plant. Characterizing the molecular basis of Kranz structure formation has become a key objective for studies of C4 photosynthesis. However, severe mutants that specifically disrupt Kranz anatomy have not been identified. In this study, we detected 549 stable ethyl methane sulfonate-induced foxtail millet (cultivar Yugu1) mutants related to leaf development and photosynthesis among 2,709 mutants screened (M3/M4 generation). The identified mutants included 52 that had abnormal leaf veins (with abnormal starch accumulation based on iodine staining). Each of the 52 mutants was characterized through an analysis of leaf morphology, and through microscopic observations of leaf tissue sections embedded in resin and paraffin. In total, 14 mutants were identified with abnormal Kranz structures exemplified by small bundle sheath cell size. Additional phenotypes of the mutants included poorly differentiated mesophyll and bundle sheath cells, increased vein density and the absence of chloroplasts in the bundle sheath cells. Kranz structure mutations were accompanied by varying leaf thickness, implying these mutations induced complex effects. We identified mutations related to Kranz structure development in this trial, which may be useful for the mapping and cloning of genes responsible for mediating Kranz structure development.

5.
Front Plant Sci ; 9: 1308, 2018.
Article in English | MEDLINE | ID: mdl-30233633

ABSTRACT

A yellow-green leaf mutant was isolated from EMS-mutagenized lines of Setaria italica variety Yugu1. Map-based cloning revealed the mutant gene is a homolog of Arabidopsis thaliana AtEGY1. EGY1 (ethylene-dependent gravitropism-deficient and yellow-green 1) is an ATP-independent metalloprotease (MP) that is required for chloroplast development, photosystem protein accumulation, hypocotyl gravitropism, leaf senescence, and ABA signal response in A. thaliana. However, the function of EGY1 in monocotyledonous C4 plants has not yet been described. The siygl2 mutant is phenotypically characterized by chlorotic organs, premature senescence, and damaged PS II function. Sequence comparisons of the AtEGY1 and SiYGL2 proteins reveals the potential for SiYGL2 to encode a partially functional protein. Phenotypic characterization and gene expression analysis suggested that SiYGL2 participates in the regulation of chlorophyll content, leaf senescence progression, and PS II function. Additionally, our research will contribute to further characterization of the mechanisms regulating leaf senescence and photosynthesis in S. italica, and in C4 plants in general.

6.
Front Plant Sci ; 9: 1103, 2018.
Article in English | MEDLINE | ID: mdl-30105043

ABSTRACT

Deoxycytidine monophosphate deaminase (DCD) is a key enzyme in the de novo dTTP biosynthesis pathway. Previous studies have indicated that DCD plays key roles in the maintenance of the balance of dNTP pools, cell cycle progression, and plant development. However, few studies have elucidated the functions of the DCD gene in Panicoideae plants. Setaria has been proposed as an ideal model of Panicoideae grasses, especially for C4 photosynthesis research. Here, a Setaria italica stripe leaf mutant (sistl2) was isolated from EMS-induced lines of "Yugu1," the wild-type parent. The sistl2 mutant exhibited semi-dwarf, striped leaves, abnormal chloroplast ultrastructure, and delayed cell cycle progression compared with Yugu1. High-throughput sequencing and map-based cloning identified the causal gene SiSTL2, which encodes a DCD protein. The occurrence of a single-base G to A substitution in the fifth intron introduced alternative splicing, which led to the early termination of translation. Further physiological and transcriptomic investigation indicated that SiSTL2 plays an essential role in the regulation of chloroplast biogenesis, cell cycle, and DNA replication, which suggested that the gene has conserved functions in both foxtail millet and rice. Remarkably, in contrast to DCD mutants in C3 rice, sistl2 showed a significant reduction in leaf cell size and affected C4 photosynthetic capacity in foxtail millet. qPCR showed that SiSTL2 had a similar expression pattern to typical C4 genes in response to a low CO2 environment. Moreover, the loss of function of SiSTL2 resulted in a reduction of leaf 13C content and the enrichment of DEGs in photosynthetic carbon fixation. Our research provides in-depth knowledge of the role of DCD in the C4 photosynthesis model S. italica and proposed new directions for further study of the function of DCD.

7.
J Exp Bot ; 67(11): 3237-49, 2016 05.
Article in English | MEDLINE | ID: mdl-27045099

ABSTRACT

Foxtail millet (Setaria italica (L.) P. Beauv), which belongs to the Panicoideae tribe of the Poaceae, is an important grain crop widely grown in Northern China and India. It is currently developing into a novel model species for functional genomics of the Panicoideae as a result of its fully available reference genome sequence, small diploid genome (2n=18, ~510Mb), short life cycle, small stature and prolific seed production. Argonaute 1 (AGO1), belonging to the argonaute (AGO) protein family, recruits small RNAs and regulates plant growth and development. Here, we characterized an AGO1 mutant (siago1b) in foxtail millet, which was induced by ethyl methanesulfonate treatment. The mutant exhibited pleiotropic developmental defects, including dwarfing stem, narrow and rolled leaves, smaller panicles and lower rates of seed setting. Map-based cloning analysis demonstrated that these phenotypic variations were attributed to a C-A transversion, and a 7-bp deletion in the C-terminus of the SiAGO1b gene in siago1b Yeast two-hybrid assays and BiFC experiments revealed that the mutated region was an essential functional motif for the interaction between SiAGO1b and SiHYL1. Furthermore, 1598 differentially expressed genes were detected via RNA-seq-based comparison of SiAGO1b and wild-type plants, which revealed that SiAGO1b mutation influenced multiple biological processes, including energy metabolism, cell growth, programmed death and abiotic stress responses in foxtail millet. This study may provide a better understanding of the mechanisms by which SiAGO1b regulates the growth and development of crops.


Subject(s)
Argonaute Proteins/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Setaria Plant/physiology , Amino Acid Sequence , Argonaute Proteins/chemistry , Argonaute Proteins/metabolism , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Sequence Alignment , Setaria Plant/genetics , Setaria Plant/growth & development
8.
Physiol Plant ; 157(1): 24-37, 2016 May.
Article in English | MEDLINE | ID: mdl-26559175

ABSTRACT

Setaria italica and its wild ancestor Setaria viridis are emerging as model systems for genetics and functional genomics research. However, few systematic gene mapping or functional analyses have been reported in these promising C4 models. We herein isolated the yellow-green leaf mutant (siygl1) in S. italica using forward genetics approaches. Map-based cloning revealed that SiYGL1, which is a recessive nuclear gene encoding a magnesium-chelatase D subunit (CHLD), is responsible for the mutant phenotype. A single Phe to Leu amino acid change occurring near the ATPase-conserved domain resulted in decreased chlorophyll (Chl) accumulation and modified chloroplast ultrastructure. However, the mutation enhanced the light-use efficiency of the siygl1 mutant, suggesting that the mutated CHLD protein does not completely lose its original activity, but instead, gains novel features. A transcriptional analysis of Chl a oxygenase revealed that there is a strong negative feedback control of Chl b biosynthesis in S. italica. The SiYGL1 mRNA was expressed in all examined tissues, with higher expression observed in the leaves. Comparison of gene expression profiles in wild-type and siygl1 mutant plants indicated that SiYGL1 regulates a subset of genes involved in photosynthesis (rbcL and LHCB1), thylakoid development (DEG2) and chloroplast signaling (SRP54CP). These results provide information regarding the mutant phenotype at the transcriptional level. This study demonstrated that the genetic material of a Setaria species could be ideal for gene discovery investigations using forward genetics approaches and may help to explain the molecular mechanisms associated with leaf color variation.


Subject(s)
Setaria Plant/genetics , Chlorophyll/metabolism , Chromosome Mapping , Color , Genotype , Mutation , Phenotype , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/radiation effects , Setaria Plant/metabolism , Setaria Plant/radiation effects
9.
Opt Express ; 22(1): 239-45, 2014 Jan 13.
Article in English | MEDLINE | ID: mdl-24514984

ABSTRACT

We propose and experimentally demonstrate a full-duplex bi-directional transmission optical wireless-over fiber integration system at W-band (75-100 GHz) with the speed up to 15 Gb/s for both 95.4 GHz link and 88.6 GHz link for the first time. The generation of millimeter-wave (mm-wave) wireless signal is based on the photonic technique by heterodyne mixing of an optical quadrature-phase-shift-keying (QPSK) signal with a free-running light at different wavelength. After 20 km fiber transmission, up to 30 Gb/s mm-wave signal is delivered over 2 m wireless link, and then converted to the optical signal for another 20 km fiber transmission. At the wireless receiver, coherent detection and advanced digital signal processing (DSP) are introduced to improve receiver sensitivity and system performance. With the OSNR of 15 dB, the bit error ratios (BERs) for 10 Gb/s signal transmission at 95.4 GHz and 88.6 GHz are below the forward-error-correction (FEC) threshold of 3.8 × 10(-3) whether post filter is used or not, while the BER for 15 Gb/s QPSK signal employing post filter in the link of 95.4 GHz is 2.9 × 10(-3).

10.
BMC Genomics ; 15: 78, 2014 Jan 28.
Article in English | MEDLINE | ID: mdl-24472631

ABSTRACT

BACKGROUND: Foxtail millet (Setaria italica (L.) Beauv.) is an important gramineous grain-food and forage crop. It is grown worldwide for human and livestock consumption. Its small genome and diploid nature have led to foxtail millet fast becoming a novel model for investigating plant architecture, drought tolerance and C4 photosynthesis of grain and bioenergy crops. Therefore, cost-effective, reliable and highly polymorphic molecular markers covering the entire genome are required for diversity, mapping and functional genomics studies in this model species. RESULT: A total of 5,020 highly repetitive microsatellite motifs were isolated from the released genome of the genotype 'Yugu1' by sequence scanning. Based on sequence comparison between S. italica and S. viridis, a set of 788 SSR primer pairs were designed. Of these primers, 733 produced reproducible amplicons and were polymorphic among 28 Setaria genotypes selected from diverse geographical locations. The number of alleles detected by these SSR markers ranged from 2 to 16, with an average polymorphism information content of 0.67. The result obtained by neighbor-joining cluster analysis of 28 Setaria genotypes, based on Nei's genetic distance of the SSR data, showed that these SSR markers are highly polymorphic and effective. CONCLUSIONS: A large set of highly polymorphic SSR markers were successfully and efficiently developed based on genomic sequence comparison between different genotypes of the genus Setaria. The large number of new SSR markers and their placement on the physical map represent a valuable resource for studying diversity, constructing genetic maps, functional gene mapping, QTL exploration and molecular breeding in foxtail millet and its closely related species.


Subject(s)
Genome, Plant , Microsatellite Repeats , Setaria Plant/genetics , Alleles , Chromosome Mapping , Chromosomes, Plant , Genetic Markers , Genotype , Polymorphism, Genetic , Quantitative Trait Loci
SELECTION OF CITATIONS
SEARCH DETAIL
...