Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 358: 142186, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701860

ABSTRACT

Fluorinated compounds (FCs) such as sulfur hexafluoride (SF6) and nitrogen trifluoride (NF3) have garnered attention due to their environmental impact. This study investigates the mineralization and removal of two potent FCs: SF6 and NF3. The results confirm that utilizing various oxalate salts leads to the formation of corresponding metallic fluorides: lithium fluoride (LiF), sodium fluoride (NaF), and potassium fluoride (KF), validating the occurrence of mineralization reactions. Among the oxalate salts, sodium oxalate demonstrates the highest mineralization efficiency in both SF6 and NF3 removal. Real-time Fourier transform infrared spectroscopy (FT-IR) gas-phase analysis confirms rapid and complete gas removal within a short reaction time using the selected oxalate salts. Meticulous mass balance calculations revealed that oxalates (LiF, NaF, and KF) yielded sulfur (S) at rates of 92.09%, 91.85%, and 84.98% following SF6 mineralization. Additionally, the conversion rates of oxalates to the corresponding metallic fluorides (LiF, NaF, and KF) after SF6 mineralization were 98.18%, 95.82%, and 95.21%, respectively. Similarly, after NF3 mineralization, these conversion rates stood at 92.18%, 90.67%, and 90.02%, respectively. The removal efficiencies for SF6 (1000 ppm) were 4.98, 12.01, and 7.23 L/g, while those for NF3 (1000 ppm) were 14.1, 12.6, and 11.7 L/g, respectively. Notably, sodium oxalate exhibits superior effectiveness, achieving 100% SF6 conversion within 30 min and 100% NF3 conversion within 50 min. This work underscores the potential of oxalate mineralization as a promising strategy for efficient and rapid removal of potent fluorinated compounds, paving the way for environmentally benign FC remediation techniques with broader implications for sustainable gas treatment technologies.


Subject(s)
Fluorides , Greenhouse Gases , Oxalates , Sulfur Hexafluoride , Oxalates/chemistry , Sulfur Hexafluoride/chemistry , Fluorides/chemistry , Greenhouse Gases/analysis , Spectroscopy, Fourier Transform Infrared , Environmental Restoration and Remediation/methods
2.
Org Biomol Chem ; 21(33): 6681-6686, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37540130

ABSTRACT

We report a base-promoted cyclization with indene-dienes as two carbon building blocks toward diverse spirocyclic indene scaffolds including hexacyclic spiroindenes bearing benzo pyran motifs and pentacyclic spiroindenes containing oxindole units in high yields with excellent diastereoselectivities.

3.
J Gastroenterol ; 49(8): 1274-84, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24129885

ABSTRACT

BACKGROUND: It is known that malignant transformation to hepatocellular carcinoma (HCC) occurs at a higher frequency in hepatocellular adenoma (HCA) from type I glycogen storage disease (GSD I) compared to HCA from other etiologies. In this study, we aimed to identify differentially expressed miRNAs in GSD Ia HCA as candidates that could serve as putative biomarkers for detection of GSD Ia HCA and/or risk assessment of malignant transformation. METHODS: Utilizing massively parallel sequencing, the miRNA profiling was performed for paired adenomas and normal liver tissues from seven GSD Ia patients. Differentially expressed miRNAs were validated in liver tumor tissues, HCC cell lines and serum using quantitative RT-PCR. RESULTS: miR-34a, miR-34a, miR-224, miR-224, miR-424, miR-452 and miR-455-5p were found to be commonly deregulated in GSD Ia HCA, general population HCA, and HCC cell lines at compatible levels. In comparison with GSD Ia HCA, the upregulation of miR-130b and downregulation of miR-199a-5p, miR-199b-5p, and miR-214 were more significant in HCC cell lines. Furthermore, serum level of miR-130b in GSD Ia patients with HCA was moderately higher than that in either GSD Ia patients without HCA or healthy individuals. CONCLUSION: We make the first observation of distinct miRNA deregulation in HCA associated with GSD Ia. We also provide evidence that miR-130b could serve as a circulating biomarker for detection of GSD Ia HCA. This work provides prominent candidate miRNAs worth evaluating as biomarkers for monitoring the development and progress of liver tumors in GSD Ia patients in the future.


Subject(s)
Adenoma, Liver Cell/genetics , Glycogen Storage Disease Type I/complications , Liver Neoplasms/genetics , MicroRNAs/genetics , Adenoma, Liver Cell/etiology , Adenoma, Liver Cell/pathology , Biomarkers, Tumor/genetics , Case-Control Studies , Cell Line, Tumor , Down-Regulation , Glycogen Storage Disease Type I/genetics , Humans , Liver Neoplasms/etiology , Liver Neoplasms/pathology , Reverse Transcriptase Polymerase Chain Reaction , Up-Regulation
4.
Nucleic Acids Res ; 40(Web Server issue): W76-81, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22618869

ABSTRACT

VarioWatch (http://genepipe.ncgm.sinica.edu.tw/variowatch/) has been vastly improved since its former publication GenoWatch in the 2008 Web Server Issue. It is now at least 10 000-times faster in annotating a variant. Drastic speed increase, through complete re-design of its working mechanism, makes VarioWatch capable of annotating millions of human genomic variants generated from next generation sequencing in minutes, if not seconds. While using MegaQuery of VarioWatch to quickly annotate variants, users can apply various filters to retrieve a subgroup of variants according to the risk levels, interested regions, etc. that satisfy users' requirements. In addition to performance leap, many new features have also been added, such as annotation on novel variants, functional analyses on splice sites and in/dels, detailed variant information in tabulated form, plus a risk level decision tree regarding the analyzed variant. Up to 1000 target variants can be visualized with our carefully designed Genome View, Gene View, Transcript View and Variation View. Two commonly used reference versions, NCBI build 36.3 and NCBI build 37.2, are supported. VarioWatch is unique in its ability to annotate comprehensively and efficiently millions of variants online, immediately delivering the results in real time, plus visualizes up to 1000 annotated variants.


Subject(s)
Genetic Variation , Genome, Human , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Software , Humans , Internet , Sequence Analysis, DNA
5.
BMC Bioinformatics ; 9 Suppl 12: S10, 2008 Dec 12.
Article in English | MEDLINE | ID: mdl-19091009

ABSTRACT

BACKGROUND: With the flood of information generated by the new generation of sequencing technologies, more efficient bioinformatics tools are needed for in-depth impact analysis of novel genomic variations. FANS (Functional Analysis of Novel SNPs) was developed to streamline comprehensive but tedious functional analysis steps into a few clicks and to offer a carefully designed presentation of results so researchers can focus more on thinking instead of typing and calculating. RESULTS: FANS http://fans.ngc.sinica.edu.tw/ harnesses the power of public information databases and powerful tools from six well established websites to enhance the efficiency of analysis of novel variations. FANS can process any point change in any coding region or GT-AG splice site to provide a clear picture of the disease risk of a prioritized variation by classifying splicing and functional alterations into one of nine risk subtypes with five risk levels. CONCLUSION: FANS significantly simplifies the analysis operations to a four-step procedure while still covering all major areas of interest to researchers. FANS offers a convenient way to prioritize the variations and select the ones with most functional impact for validation. Additionally, the program offers a distinct improvement in efficiency over manual operations in our benchmark test.


Subject(s)
Computational Biology/methods , Mutation , Polymorphism, Single Nucleotide , Animals , Automation , Genetic Variation , Genome , Genome, Human , Genomics , Humans , Mice , Programming Languages , Risk , Sequence Analysis, DNA/methods , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...