Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Water Res ; 256: 121602, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38621315

ABSTRACT

Emerging microplastics-heavy metal (MPs-HM) contaminants in wastewaters pose an emerging health and environmental risk due to their persistence and increasing ecological risks (e.g., "Trojan horse" effect). Hence, removing MPs in solution and preventing secondary releases of HM has become a key challenge when tackling with MPs pollution. Leveraging the hydrophobic nature of MPs and the electron transfer efficiency from Fe0 to HM, we demonstrate an alkylated and sulfidated nanoscale zerovalent iron (AS-nZVI) featuring a delicate "core-shell-hydrophobic film" nanostructure. Exemplified by polystyrene (PS) MPs-Pb(II) removal, the three nanocomponents offer synergistic functions for the rapid separation of MPs, as well as the reduction and stabilization of Pb(II). The outmost hydrophobic film of AS-nZVI greatly improves the anticorrosion performance of nanoscale zerovalent iron and the enrichment abilities of hydrophobic MPs, achieving a maximum removal capacity of MPs to 2725.87 mgMPs·gFe-1. This MPs enrichment promotes the subsequent reductive removal of Pb(II) through the electron transfer from the iron core of AS-nZVI to Pb(II), a process further strengthened by the introduced sulfur. When considering the inevitable aging of MPs in wastewaters due to mechanical wear or microbial degradation, our study concurrently examines the efficiencies and behaviors of AS-nZVI in removing virgin-MPs-Pb(II) and aged-MPs-Pb(II). The batch results reveal that AS-nZVI has an exceptional ability to remove above 99.6 % Pb(II) for all reaction systems. Overall, this work marks a pioneering effort in highlighting the importance of MPs-toxin combinations in dealing with MPs contamination and in demonstrating the utility of nZVI techniques for MPs-contaminated water purification.


Subject(s)
Iron , Microplastics , Polystyrenes , Water Pollutants, Chemical , Iron/chemistry , Polystyrenes/chemistry , Water Pollutants, Chemical/chemistry , Microplastics/chemistry , Wettability , Metals, Heavy/chemistry , Electron Transport
2.
J Environ Manage ; 347: 119089, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37783089

ABSTRACT

Metal-organic frameworks (MOFs)-based materials have been of great public interest in persulfate (PS)-based catalytic oxidation for wastewater purification, because of their excellent performance and selectiveness in organic contaminants (OCs) removal in complex water environments. The formation, fountainhead and reaction mechanism of reactive oxygen species (ROSs) in PS-based catalytic oxidation are crucial for understanding the principles of PS activation and the degradation mechanism of OCs. In the paper, we presented the quantitative structure-activity relationship (QSAR) of MOFs-based materials for PS activation, including the relationship of structure and removal efficiency, active sites and ROSs as well as OCs. In various MOFs-based materials, there are many factors will affect their performances. We discussed how various surface modification projects affected the characteristics of MOFs-based materials used in PS activation. Moreover, we revealed the process of ROSs generation by active sites and the oxidation of OCs by ROSs from the micro level. At the end of this review, we putted forward an outlook on the development trends and faced challenges of MOFs for PS-based catalytic oxidation. Generally, this review aims to clarify the formation mechanisms of ROSs via the active sites on the MOFs and the reaction mechanism between ROSs and OCs, which is helpful for reader to better understand the QSAR in various MOFs/PS systems.


Subject(s)
Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Oxygen , Oxidation-Reduction
3.
Sci Total Environ ; 905: 167399, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37793443

ABSTRACT

Hexavalent chromium (Cr(VI)) is carcinogenic and widely presented in soil. In this study, modified zero-valent iron (ZVI) with oxalic acid on biochar (OA-ZVI/BC) was prepared using wet ball milling method for the remediation of Cr(VI)-contaminated soil. Microscopic characterizations showed that ZVI were distributed on the biochar uniformly and confirmed the enhanced interface interaction between biochar and ZVI by wet ball milling. Electrochemical analysis indicated the strong electron transfer ability and enhanced corrosion behavior of OA-ZVI/BC. Moreover, inhibitory efficiencies of Cr(VI) removal with the addition of 1,10-phenanthroline suggested abundant Fe2+ generation in OA-ZVI/BC, which might facilitate the reduction of Cr(VI) to Cr(III). Theory calculation further demonstrated the ZVI modified by oxalic acid was more susceptible to solid-solid interfacial reactions with Cr(VI), and more electrons were transferred to Cr(VI). When applied to Cr(VI)-contaminated soil, OA-ZVI/BC could passivate 96.7 % total Cr(VI) and maintained for 90 days. The toxicity characteristic leaching procedure (TCLP) and simple based extraction test (SBET) were used to evaluate the leaching toxicity and bioaccessibility of Cr(VI), respectively. The TCLP-Cr(VI) decreased to 0.11 mg·L-1 after OA-ZVI/BC treatment, much lower than that of soils with ZVI/BC and OA-ZVI remediation (1.5 mg·L-1 and 4.1 mg·L-1). The bioaccessibility of Cr(VI) reduced by 93.5 % after 3-month remediation. Sequential extraction showed that Cr fractions in the soil after OA-ZVI/BC remediation was converted from acetic acid-extractable (HOAc-extractable) to more stable forms (e.g., residual and oxidizable forms). Benefiting from the synergies of oxalic acid, biochar and wet ball milling, OA-ZVI/BC exhibited an excellent performance on the remediation of Cr(VI)-contaminated soil, whose mechanisms involved adsorption, reduction (Fe0/Fe2+, Fe2+/Fe3+) and co-precipitation. This study herein develops a promising ZVI technology in the remediation of heavy metal-contaminated soil.

4.
Chemosphere ; 344: 140343, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37788746

ABSTRACT

This study aimed to investigate the immobilization efficiency of sulfidated nanoscale zero valent iron on Cr(VI) in soil. Reactions between sulfidated nanoscale zero valent iron and Cr(VI) in soil system and effects of sulfidated nanoscale zero valent iron on microbes had been demonstrated. Solid characterization results confirmed the incorporation of sulfur into nanoscale zero valent iron. Furthermore, the main oxidation products of iron after the reactions were magnetite, goethite and lepidocrocite. Fe-Cr complexes indicated that Cr(VI) was reduced to Cr(III). The results of 16 S rRNA gene analysis indicated that the sulfidated nanoscale zero valent iron had a limited bactericidal effect but further stimulated the sulfite reductase gene population, representing its positive effect for the soil remediation. The study showed that some microflora such as Protobacteria were promoted, while others community such as Firmicutes, were depressed. Furthermore, Cr mainly converted from a high toxic state such as exchangeable (EX) to less bioavailable state such as iron-manganese oxides bound (OX) and organic matter-bound (OM), thus reducing the toxicity of Cr when sulfidated nanoscale zero valent iron was added. High immobilization efficiency of the Cr(VI) compared to nanoscale zero valent iron indicated an improvement on selectivity and reactivity after sulfidation. Overall, sulfidated nanoscale zero valent iron was promising for the immobilization of Cr(VI) immobilization soil.


Subject(s)
Environmental Restoration and Remediation , Soil Pollutants , Water Pollutants, Chemical , Iron , Soil , Soil Pollutants/analysis , Chromium/analysis , Water Pollutants, Chemical/analysis
5.
Environ Sci Pollut Res Int ; 30(21): 60704-60716, 2023 May.
Article in English | MEDLINE | ID: mdl-37041353

ABSTRACT

Efficient removal of antibiotics from the aquatic environment is urgently needed due to their obstinate accumulation and non-biodegradability. In this study, a mesoporous carbon material (ZC-0.5) was successfully synthesized for the adsorption of sulfamethoxazole (SMX), one of the major antibiotics for the treatment of human and animal infections. ZIF-8 as the precursor of ZC-0.5, specifically, using cetyl trimethyl ammonium bromide (CTAB) and sodium laurate (SL) as dual templates and carbonizing at 800 ℃. This novel adsorbent exhibited a high proportion of mesopore (75.64%) and a large specific surface area (1459.73 m2·g-1). The adsorption experiment examined the reusability of ZC-0.5 and that it could retain superior maximum adsorption capacities (167.45 mg∙L-1) after five cycles of adsorption and desorption. The adsorption process satisfied the pseudo-second-order kinetic (PSO) and mixed first- and second-order kinetic (MOE). It also satisfied the Freundlich and Sips isotherm models. Moreover, thermodynamic calculation indicated the adsorption process was spontaneous, endothermal, and entropy-increasing. Furthermore, plausible adsorption mechanisms were explained through van der Waals force, electrostatic interaction, hydrophobic force, π-π interaction, and hydrogen bond. This work offers a new efficient adsorbent for antibiotic elimination.


Subject(s)
Sulfamethoxazole , Water Pollutants, Chemical , Humans , Sulfamethoxazole/chemistry , Adsorption , Anti-Bacterial Agents/chemistry , Water , Thermodynamics , Kinetics , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration
6.
Chemosphere ; 311(Pt 2): 137159, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36343735

ABSTRACT

A core-shell covalent organic framework encapsulated Co1.2Fe1.8O4 magnetic particles (CFO@COF) was designed and prepared successfully to activate peroxymonosulfate (PMS) for sulfamethoxazole (SMX) degradation. It displays amazing catalytic reactivity since the unique interior structure and synergistic effect between COF shell and CFO core, reaching 99.8% removal of SMX (10 mg/L) within 30 min and 90.8% TOC removal. The synergy between bimetals vests high reactivity to CFO core. And the outer COF shell can stabilize the CFO core under intricate reaction conditions to restrain the leaching of Co ions (decreased from 0.75 to 0.25 mg/L). Further investigation compared the activation mechanism in two different system, CFO/PMS system and CFO@COF/PMS system. The result showed that the radical mechanism controlled by SO4⋅- guided the SMX degradation in CFO/PMS system whereas the 1O2 played a pivotal role in CFO@COF/PMS system called non-radical leading. The influences of various factors on degradation experiments and SMX degradation pathway were also studied. Most importantly, risk assessment in CFO@COF/PMS/SMX system was estimated via "ecological structure activity relationships". In most case, the toxicities of intermediates were lower than the initial samples, which confirmed the effectiveness of CFO@COF/PMS/SMX system in the reduction of toxicity of SMX.

7.
Environ Sci Technol ; 55(17): 11533-11537, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34323474

ABSTRACT

Visualizing trace pollutants such as toxic metals and viruses in environmental solids such as soils, sediments, aerosols, and suspended particles in water has long been the holy grail for scientists and engineers. In this Perspective, progress on the state-of-the-art electron tomography is highlighted as an increasingly indispensable tool for visualizing contaminant distribution and transformation in three-dimension (3D), including environmental pollutants at the water-minerals interfaces, toxicology assessment, environmental behavior of viruses in heterogeneous environmental media, etc. Adding a third dimension to the pollutant characterization will surely enrich our understanding on the complex and emerging environmental issues facing the global society, and provide vital support to the ongoing research and development of life-saving mitigation technologies from air filtration, to drinking water purification, to virus disinfection.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Water Purification , Electron Microscope Tomography , Environmental Monitoring , Geologic Sediments , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...