Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 14: 1117753, 2023.
Article in English | MEDLINE | ID: mdl-36937310

ABSTRACT

Introduction: Clonostachys, a genus with rich morphological and ecological diversity in Bionectriaceae, has a wide distribution among diverse habitats. Methods and Results: In the present study, a phylogenetic framework is reconstructed for the family Bionectriaceae focusing on Clonostachys through increased taxon-sampling using the nrLSU sequence. Through surveying Clonostachys in China, Vietnam, and Thailand over the past 3 years, seven Clonostachys spp. were found and identified. Two new species, C. chuyangsinensis and C. kunmingensis, are described and illustrated based on morphological characteristics and molecular data. The phylogenetic positions of the seven species were evaluated based on four genomic loci (ITS, nrLSU, TUB2, and TEF1). Discussion: Moreover, the genetic divergence comparisons of Clonostachys species for three markers (ITS, TUB2, and TEF1) are also provided. The results indicated that the TEF1 sequence data provided the best resolution for distinguishing species of Clonostachys, followed by sequence data for the TUB2 and ITS regions.

2.
Front Microbiol ; 13: 846909, 2022.
Article in English | MEDLINE | ID: mdl-35495705

ABSTRACT

The current study was aimed to introduce five new species of Cordyceps from Yunnan, with morphological descriptions, illustrations, color photographs, phylogenetic placement, associated host, and a comparison with allied taxa. The five new species were morphologically distinct from all other Cordyceps sensu lato species, and it was also suggested that they should differ from other species in the genus Cordyceps based on combined multigene analyses. Employing DNA nucleotide sequences of the nrLSU, nrSSU, tef-1α, rpb1, and rpb2, the five new species were recognized in the clade of Cordyceps by using molecular phylogenetic analyses, including five well-supported subclades: three new species, Cordyceps bullispora, Cordyceps longiphialis, and Cordyceps nabanheensis, were found in the subclade of C. pruinosa, and two new species, Cordyceps pseudotenuipes and Cordyceps simaoensis, were located in the subclade of C. tenuipes. The five novel species shared similar morphologies to other species in the genus Cordyceps, with fleshy and brightly pigmented stromata; perithecia superficial to completely immersed, ordinal in arrangement; and hyaline asci, with thickened cylindrical ascus apex. The morphological characteristics of 66 species in Cordyceps sensu stricto, namely, 5 novel species and 61 known taxa, were also compared.

3.
Front Microbiol ; 13: 841604, 2022.
Article in English | MEDLINE | ID: mdl-35317260

ABSTRACT

Beauveria is a very important fungal resource. Some Beauveria species have great economic and ecological value. Through surveying Beauveria in China and Thailand over the past 4 years, 15 Beauveria spp. were collected and identified. Three new species-namely, B. polyrhachicola, B. songmingensis, and B. subscarabaeidicola-were described and illustrated based on morphological characteristics and molecular data. The phylogenetic positions of the 15 species were evaluated according to phylogenetic inferences based on six loci (nrSSU, nrLSU, TEF, RPB1, RPB2, and Bloc). Nine species of Beauveria in our study were isolated from adult scarab beetles (Coleoptera: Scarabaeidae). The pathogenicity of the isolates from the B. bassiana complex and B. scarabaeidicola complex was determined with three bioassays using B. mori and T. molitor larvae, in addition to Protaetia brevitarsis adults. The results indicated that the B. bassiana complex isolates had great potential in the biocontrol of the three insects; by contrast, the B. scarabaeidicola complex isolates showed obvious host specificity and low virulence.

4.
Antonie Van Leeuwenhoek ; 114(4): 465-477, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33638738

ABSTRACT

Cordyceps militaris is a traditional Chinese medicinal food that is challenging to quality maintaining while mass cultivation. Many studies have found that abundant microbes inhabit Ophiocordyceps sinensis and perform important functions for their host. In this study, our objective was to reveal the microbial communities that inhabit C. militaris and analyze their potential functions. High-throughput sequencing of 16S rRNA and ITS genes was used to compare the diversity and composition of the bacterial and fungal communities associated with naturally occurring C. militaris collected from Yunnan Province, southwestern China. The diversity and richness of the microbial communities and the number of function genes of the bacteria were significantly higher in the habitat soil than in the fruiting body. The sclerotia and stromata samples shared the same microbiota and functions. The main bacterial phyla were Proteobacteria, Acidobacteria, Bacteroidetes and Actinobacteria, and Ascomycota was the main fungal phylum. The growth-promoting bacteria Herbaspirillum and the plant probiotic Phyllobacterium, which may enhance C. militaris quality and facilitate its cultivation, were detected in the fruiting body samples. Genes related to metabolism were more abundant in the soil bacteria, while membrane transport genes were more abundant in the endophytic bacteria of C. militaris. Our study is the first to reveal the unexpectedly high diversity of the microbial communities and the bacterial functions inhabiting the natural C. militaris using high-throughput sequencing, and our results provide insights into mining the functions of microorganisms in the development and quality of C. militaris.


Subject(s)
Cordyceps , Microbiota , China , Cordyceps/genetics , RNA, Ribosomal, 16S/genetics , Soil , Soil Microbiology
5.
Med Chem ; 17(2): 97-120, 2021.
Article in English | MEDLINE | ID: mdl-31880251

ABSTRACT

BACKGROUND: Some species of Cordyceps sensu lato are famous Chinese herbs with significant biological activities, often used as edible food and traditional medicine in China. Cordyceps represents the largest entomopathogenic group of fungi, including 40 genera and 1339 species in three families and incertae sedis of Hypocreales. OBJECTIVE: Most of the Cordyceps-derivatives have been approved clinically for the treatment of various diseases such as diabetes, cancers, inflammation, cardiovascular, renal and neurological disorders and are used worldwide as supplements and herbal drugs, but there is still need for highly efficient Cordyceps-derived drugs for fatal diseases with approval of the U.S. Food and Drug Administration. METHODS: Computer-aided drug design concepts could improve the discovery of putative Cordyceps- derived medicine within less time and low budget. The integration of computer-aided drug design methods with experimental validation has contributed to the successful discovery of novel drugs. RESULTS: This review focused on modern taxonomy, active metabolites, and modern drug design techniques that could accelerate conventional drug design and discovery of Cordyceps s. l. Successful application of computer-aided drug design methods in Cordyceps research has been discussed. CONCLUSION: It has been concluded that computer-aided drug design techniques could influence the multiple target-focused drug design, because each metabolite of Cordyceps has shown significant activities for the various diseases with very few or no side effects.


Subject(s)
Cordyceps/metabolism , Computer Simulation , Drug Design , Drug Discovery , Drugs, Chinese Herbal , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology
6.
Mycobiology ; 49(2): 133-141, 2021.
Article in English | MEDLINE | ID: mdl-37970184

ABSTRACT

A new fungus, Ophiocordyceps alboperitheciata, parasitic on the larva of Noctuidae (Lepidoptera) was identified from a survey of entomopathogenic fungi in Kunming Wild Duck Forest Park, Yunnan Province, China. It can be primarily distinguished from relatives by its longer fertile parts, sterile tips, superficial perithecia, narrower asci, and smaller septa of ascospores. As revealed from phylogenetic analyses inferred from nrSSU, nrLSU, tef-1α, rpb1, and rpb2 sequence data, O. alboperitheciata belongs to the Hirsutella citriformis clade in the genus Ophiocordyceps of Ophiocordycipitaceae, and forms a separated clade from other related species. The uniqueness of the taxon is significantly evidenced by both molecular phylogeny and morphology. Furthermore, the interspecific relationships in the H. citriformis clade are discussed.

7.
J Invertebr Pathol ; 172: 107333, 2020 05.
Article in English | MEDLINE | ID: mdl-32001215

ABSTRACT

Beauveria pseudobassiana has great potential for use in the management of various insect pests. In the present study, we aimed to explore the the virulence of B. pseudobassiana isolated from a diversity of hosts to Bombyx mori and Tenebrio molitor larvae. To this end, 15B. pseudobassiana isolates from 10 different geographical locations were identified based on morphological characteristics and molecular data. The phylogenetic positions of the isolates were evaluated according to morphological features and phylogenetic inferences based on six loci (nrSSU, nrLSU, TEF, RPB1, RPB2 and Bloc). In addition to growth in soil, the B. pseudobassiana isolates in our study were isolated from a wide host range that extended to 5 orders, 11 families, and 14 species. Moreover, anamorphically typified B. pseudobassiana was grown for the first time from teleomorph stromata. Pathogenicity of the B. pseudobassiana isolates from the different hosts was determined with two bioassays using B. mori and T. molitor larvae. The results indicated that mortality of B. mori caused by the lepidopteran isolates was significantly higher than that of isolates from other hosts, and virulence of the coleopteran isolates to T. molitor was significantly higher than that of isolates from other hosts. The host specificity of B. pseudobassiana should be studied in more detail before future consideration of isolates for use in biological control of pests.


Subject(s)
Beauveria/pathogenicity , Bombyx/microbiology , Tenebrio/microbiology , Animals , Beauveria/classification , Beauveria/cytology , Beauveria/genetics , Bombyx/growth & development , Larva/growth & development , Larva/microbiology , Phylogeny , Soil Microbiology , Tenebrio/growth & development , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...