Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 19(29): e2207133, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36971296

ABSTRACT

Rechargeable aqueous Zn/S batteries exhibit high capacity and energy density. However, the long-term battery performance is bottlenecked by the sulfur side reactions and serious Zn anode dendritic growth in the aqueous electrolyte medium. This work addresses the problem of sulfur side reactions and zinc dendrite growth simultaneously by developing a unique hybrid aqueous electrolyte using ethylene glycol as a co-solvent. The designed hybrid electrolyte enables the fabricated Zn/S battery to deliver an unprecedented capacity of 1435 mAh g-1 and an excellent energy density of 730 Wh kg-1 at 0.1 Ag-1 . In addition, the battery exhibits capacity retention of 70% after 250 cycles even at 3 Ag-1 . Moreover, the cathode charge-discharge mechanism studies demonstrate a multi-step conversion reaction. During discharge, the elemental sulfur is sequentially reduced by Zn to S2- ( S 8 → S x 2 - → S 2 2 - + S 2 - ) ${{\rm{S}}_8}{\bm{ \to }}{\rm{S}}_{\rm{x}}^{2{\bm{ - }}}{\bm{ \to }}{\rm{S}}_2^{2{\bm{ - }}}{\bm{ + }}{{\rm{S}}^{2{\bm{ - }}}})$ , forming ZnS. On charging, the ZnS and short-chain polysulfides will oxidize back to elemental sulfur. This electrolyte design strategy and unique multi-step electrochemistry of the Zn/S system provide a new pathway in tackling both key issues of Zn dendritic growth and sulfur side reactions, and also in designing better Zn/S batteries in the future.

2.
Sci Data ; 9(1): 678, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36347894

ABSTRACT

Recent advances in high-throughput experiments and systems biology approaches have resulted in hundreds of publications identifying "immune signatures". Unfortunately, these are often described within text, figures, or tables in a format not amenable to computational processing, thus severely hampering our ability to fully exploit this information. Here we present a data model to represent immune signatures, along with the Human Immunology Project Consortium (HIPC) Dashboard ( www.hipc-dashboard.org ), a web-enabled application to facilitate signature access and querying. The data model captures the biological response components (e.g., genes, proteins, cell types or metabolites) and metadata describing the context under which the signature was identified using standardized terms from established resources (e.g., HGNC, Protein Ontology, Cell Ontology). We have manually curated a collection of >600 immune signatures from >60 published studies profiling human vaccination responses for the current release. The system will aid in building a broader understanding of the human immune response to stimuli by enabling researchers to easily access and interrogate published immune signatures.


Subject(s)
Software , Systems Biology , Vaccination , Humans , Metadata
SELECTION OF CITATIONS
SEARCH DETAIL
...