Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38998749

ABSTRACT

The vibrations in functionally graded porous Cu-Si microcantilever beams are investigated based on physical neutral plane theory, modified coupled stress theory, and scale distribution theory (MCST&SDT). Porous microcantilever beams define four pore distributions. Considering the physical neutral plane theory, the material properties of the beams are computed through four different power-law distributions. The material properties of microcantilever beams are corrected by scale effects based on modified coupled stress theory. Considering the fluid driving force, the amplitude-frequency response spectra and resonant frequencies of the porous microcantilever beam in three different fluids are obtained based on the Euler-Bernoulli beam theory. The quality factors of porous microcantilever beams in three different fluids are derived by estimating the equation. The computational analysis shows that the presence of pores in microcantilever beams leads to a decrease in Young's modulus. Different pore distributions affect the material properties to different degrees. The gain effect of the scale effect is weakened, but the one-dimensional temperature field and amplitude-frequency response spectra show an increasing trend. The quality factor is decreased by porosity, and the degree of influence of porosity increases as the beam thickness increases. The gradient factor n has a greater effect on the resonant frequency. The effect of porosity on the resonant frequency is negatively correlated when the gradient factor is small (n<1) but positively correlated when the gradient factor is large (n>1).

2.
Materials (Basel) ; 15(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36363173

ABSTRACT

The purposes of this paper are to study bending, buckling, and vibration by considering micro-scale effects using the Kirchhoff thin-plate theory and to consider small deflections, neglecting higher-order nonlinear terms. The governing equations for the bending, buckling, and vibration of the system are obtained using the equilibrium method coupled with the Kirchhoff thin-plate theory and a modified couple stress theory (MCST). The concept of the equivalent bending stiffness (EBS) of micro-thin plates is proposed to describe the scale effect. The Navier method is used to obtain analytical solutions for the bending, buckling, and free vibration of thin plates under simply supported boundary conditions with scale effects. The numerical results are presented to investigate the influence of scale effects on deflection, critical buckling load, buckling topography, and thin-plate natural frequency. The results show that the scale effect increases the equivalent stiffness of the thin plate, which leads to a decrease in deflection, a larger critical buckling load, and an increase in natural frequency, but does not affect the buckling topography. The MSCT is invalid when the thickness is greater than 10 times the scale effect parameter, thus defining the scope of application of the scale effect. This research study may contribute to the design of micro-scale devices such as MEMSs/NEMSs.

3.
Nanomaterials (Basel) ; 12(19)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36234630

ABSTRACT

Size-dependent functionally graded material thin plate buckling and post-buckling problems are considered using the framework of the MCST (Modified Couple Stress Theory). Based on modified couple stress theory and power law, the post-buckling deflection and critical buckling load of simply supported functionally graded material thin plate are derived using Hamilton's minimum potential energy principle. The analysis compares the simulation results of linear buckling and nonlinear buckling. Innovatively, a power-law distribution with scale effects is considered. The influences of scale effect parameters l and power-law index parameters k on buckling displacement, load, and strain energy of plates have been investigated. In this article, it is found that the critical buckling displacement, critical buckling load, and buckling strain energy increase with increases in the power-law index parameters k. The membrane energy decreases as the power-law index parameter increases. If the upper and lower layers are swapped, the opposite result is obtained. In comparison, the scale effect parameter is more influential than the power-law exponent. The critical buckling displacement in the x-direction is not affected by scale effects. The critical buckling load, the membrane energy, and buckling strain energy increase as the scale effect parameter increases. Scale effects increase material stiffness compared with traditional theory, and the power-law index parameters affect FGM properties such as elastic modulus, Poisson's ratio, density, etc. Both scale effects parameters and power-law index parameters have important effects on the mechanical behavior of materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...