Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Carbohydr Polym ; 337: 122161, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710576

ABSTRACT

The burgeoning interest in biopolymer 3D printing arises from its capacity to meticulously engineer tailored, intricate structures, driven by the intrinsic benefits of biopolymers-renewability, chemical functionality, and biosafety. Nevertheless, the accessibility of economical and versatile 3D-printable biopolymer-based inks remains highly constrained. This study introduces an electroconductive ink for direct-ink-writing (DIW) 3D printing, distinguished by its straightforward preparation and commendable printability and material properties. The ink relies on chitosan as a binder, carbon fibers (CF) a low-cost electroactive filler, and silk fibroin (SF) a structural stabilizer. Freeform 3D printing manifests designated patterns of electroconductive strips embedded in an elastomer, actualizing effective strain sensors. The ink's high printability is demonstrated by printing complex geometries with porous, hollow, and overhanging structures without chemical or photoinitiated reactions or support baths. The composite is lightweight (density 0.29 ± 0.01 g/cm3), electroconductive (2.64 ± 0.06 S/cm), and inexpensive (20 USD/kg), with tensile strength of 20.77 ± 0.60 MPa and Young's modulus of 3.92 ± 0.06 GPa. 3D-printed structures exhibited outstanding electromagnetic interference (EMI) shielding effectiveness of 30-31 dB, with shielding of >99.9 % incident electromagnetic waves, showcasing significant electronic application potential. Thus, this study presents a novel, easily prepared, and highly effective biopolymer-based ink poised to advance the landscape of 3D printing technologies.

2.
Nanoscale ; 15(16): 7577-7590, 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37039126

ABSTRACT

Functionalisation of nanofillers is required for the promotion of strong interfacial interactions with polymers and is essential as a route for the preparation of (nano)composites with superior mechanical properties. Tungsten disulphide nanotubes (WS2 NTs) were functionalized using (3-aminopropyl) triethoxysilane (APTES) for preparation of composites with poly(lactic acid) (PLA). The WS2 NTs : APTES ratios used were 1 : 1, 1 : 2 and 1 : 4 WS2 NTs : APTES. The APTES formed siloxane networks bound to the NTs via surface oxygen and carbon moieties adsorbed on the WS2 NTs surface, detected by X-ray photoelectron spectroscopy (XPS) studies and chemical mapping using energy dispersive X-ray spectroscopy in the scanning transmission electron microscope (STEM-EDS). The successful silane modification of the WS2 NTs was clearly evident with both significant peak shifting by as much as 60 cm-1 for Si-O-Si vibrations (FTIR) and peak broadening of the A1g band in the Raman spectra of the WS2 NTs. The evolution of new bands was also observed and are associated with Si-CH2-CH2 and, symmetric and assymetric -NH3+ deformation modes (FTIR). Further evidence for functionalization was obtained from zeta potential measurements as there was a change in surface charge from negative for pure WS2 NTs to positive for APTES modified WS2 NTs. Additionally, the thermal stability of APTES was shifted to much higher temperatures as it was bound to the WS2 NTs. The APTES modified WS2 NTs were organophilic and readily dispersed in PLA, while presence of the pendant amine and hydroxyl groups resulted in strong interfacial interactions with the polymer matrix. The inclusion of as little as 0.5 wt% WS2 NTs modified with 2.0 wt% APTES resulted in an increase of 600% in both the elongation at break (a measure of ductility) and the tensile toughness relative to neat PLA, without impacting the stiffness or strength of the polymer.

3.
Sci Adv ; 9(1): eadd1511, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36608136

ABSTRACT

A potential record of Earth's magnetic field going back 4.2 billion years (Ga) ago is carried by magnetite inclusions in zircon grains from the Jack Hills. This magnetite may be secondary in nature, however, meaning that the magnetic record is much younger than the zircon crystallization age. Here, we use atom probe tomography to show that Pb-bearing nanoclusters in magnetite-bearing Jack Hills zircons formed during two discrete events at 3.4 and <2 Ga. The older population of clusters contains no detectable Fe, whereas roughly half of the younger population of clusters is Fe bearing. This result shows that the Fe required to form secondary magnetite entered the zircon sometime after 3.4 Ga and that remobilization of Pb and Fe during an annealing event occurred more than 1 Ga after deposition of the Jack Hills sediment at 3 Ga. The ability to date Fe mobility linked to secondary magnetite formation provides new possibilities to improve our knowledge of the Archean geodynamo.

4.
Opt Express ; 30(11): 18692-18702, 2022 May 23.
Article in English | MEDLINE | ID: mdl-36221665

ABSTRACT

An over 75 nm broadband spectrum with a gain per unit length of >2 dB/cm was obtained from a homemade Yb: YAG crystal-derived silica fiber (YCDSF) with Yb-doping concertation of 6.57 wt.%. Using a 13-cm-long YCDSF, a low-noise wavelength-tunable single-frequency fiber laser has been constructed, enabling a single longitudinal mode oscillation from 1009 to 1070 nm. In particular, in the 1023-1056 nm waveband, the laser operating at any wavelength exhibited a maximum output power over 37 mW with power fluctuations below 0.38%, a slope efficiency >8%, and an optical signal-to-noise ratio higher than 60 dB. A linewidth of less than 2.8 kHz was also observed at the maximum pump powers, and relative intensity noise was as low as -155 dB/Hz at frequencies above 1.0 MHz. These results indicate that the YCDSFs with broadband high-gain characteristics are promising for wavelength-tunable fiber lasers in applications such as optical coherence tomography, precision metrology, nonlinear frequency conversion, and so on.

5.
Opt Express ; 30(5): 8248-8256, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35299570

ABSTRACT

We have explored an orbital angular momentum (OAM) amplifier of 10 vortex modes under different-order OAM pump modes, i.e. OAM0, OAM1, and OAM2. The all-fiber amplification system consists of an active few-mode erbium-doped fiber (FM-EDF), a mode selective pump (MSP), and a mode selective signal (MSS). These mode selective components are based on fused-taper mode selective couplers (MSC) under different wavelengths fabricated by a passive ring-core fiber (RCF). Under different-order mode pumps, the OAM amplifier experimentally exhibits mode gains (MGs) above 15 dB for 10 vortex modes with the mode purities only 89%, essentially in line with the simulation results. Especially when the signal-mode profiles are better matched to the pump-mode profiles, i.e. the OAM pumps with the same order as signals, the obtained MGs are all over 20.2 dB and the amplified OAM mode purity is up to 97%; the acquired noise figures (NFs) are <4.9 dB and even the minimum NF is 3.2 dB. The results reveal that the OAM amplifier shows low-NF and high-purity characteristics under configurable pump modes in C-band. The amplified high-order OAM mode could be promising for uses in the long-distance mode division multiplexing (MDM) and in mitigation of the upcoming capacity crunch in optical fiber communication.

6.
Polymers (Basel) ; 13(4)2021 Feb 14.
Article in English | MEDLINE | ID: mdl-33672901

ABSTRACT

Cellulose nanocrystals (CNCs) and/or sepiolite (SPT) were thermomechanically mixed with un-plasticised chitosan and chitosan/carboxymethyl cellulose (CMC) blends plasticised with 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]). Examination of the morphology of these materials indicates that SPT aggregates were reduced when CNCs or [C2mim][OAc] were present. Inclusion of CNCs and/or SPT had a greater effect on material properties when the matrices were un-plasticised. Addition of SPT or CNCs altered the crystalline structure of the un-plasticised chitosan matrix. Moreover, a combination of SPT and CNCs was more effective at suppressing re-crystallisation. Nonetheless, the mechanical properties and surface hydrophobicity were more related to CNC/SPT-biopolymer interactions. The un-plasticised bionanocomposites generally showed increased relaxation temperatures, enhanced tensile strength, and reduced surface wettability. For the [C2mim][OAc] plasticised matrices, the ionic liquid (IL) dominates the interactions with the biopolymers such that the effect of the nanofillers is diminished. However, for the [C2mim][OAc] plasticised chitosan/CMC matrix, CNCs and SPT acted synergistically suppressing re-crystallisation but resulting in increased tensile strength.

7.
Carbohydr Polym ; 253: 117231, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33278989

ABSTRACT

The effect of graphene oxide (GO) or reduced GO (rGO) on the structure and properties of polyelectrolyte-complexed chitosan/alginate bionanocomposites is highly dependent on plasticiser type (glycerol or 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc])) due to the competing interactions between the components. For the glycerol-plasticised chitosan/alginate matrix, inclusion of GO/rGO enhanced the chitosan crystallinity and increased matrix ductility. While the chitosan/alginate matrix plasticised by [C2mim][OAc] showed dramatically weakened interactions between the two biopolymers, GO was highly effective at counteracting the effect of [C2mim][OAc] by interacting with the biopolymers and the ionic liquid ions, resulting in enhanced mechanical properties and decreased surface hydrophilicity. Compared with GO, rGO was much less effective at promoting chitosan-alginate interactions and even resulted in higher surface hydrophilicity. However, irrespective of the plasticiser type, inclusion of rGO resulted in reduced crystallinity by restricting the interactions between [C2mim][OAc] and the biopolymers, and higher ionic conductivity.


Subject(s)
Alginates/chemistry , Chitosan/chemistry , Graphite/chemistry , Graphite/pharmacology , Ionic Liquids/chemistry , Nanocomposites/chemistry , Plasticizers/chemistry , Electric Conductivity , Glycerol/chemistry , Hydrophobic and Hydrophilic Interactions/drug effects , Imidazoles/chemistry , Ions/chemistry , Molecular Structure , Surface Properties/drug effects , Transition Temperature
8.
ACS Omega ; 5(30): 19070-19081, 2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32775909

ABSTRACT

The structure and properties of different biopolymer composites based on chitosan and chitosan/carboxymethyl cellulose (CMC) are governed by multiple structure-property relationships associated with different phase interactions. Plasticization of these matrices with ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) played a dominant role, increasing the mobility of biopolymer chains as well as ions and associated dipoles but reducing biopolymer chain interactions, crystallinity, and thermal stability. These structural changes led to higher matrix ionic conductivity, shorter electrical relaxation time, and greater matrix ductility. The inclusion of graphene oxide (GO) and reduced GO (rGO) also influenced the structure and properties of these bionanocomposites by disrupting the biopolymer hydrogen bonding and/or polyelectrolyte complexation (PEC) and interacting with [C2mim][OAc]. The impact of GO/rGO was more evident for 20 wt % [C2mim][OAc], such as increased crystallinity and thermal stability of chitosan. PEC was hindered with excess (40 wt %) [C2mim][OAc] added and further hindered again when rGO was included. This study shows that the structure and properties of bionanocomposites are not just determined by the surface chemistry of GO/rGO but can also be influenced by multiple interactions involving plasticizers such as ILs and additional biopolymers.

9.
Opt Express ; 28(16): 23771-23783, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32752369

ABSTRACT

We fabricated a Yb-doped yttrium aluminium garnet (Yb:YAG) crystal-derived silica fiber (YCDSF) using an assembly consisting of a YAG crystal rod and silica tube on a CO2 laser-heated drawing tower. The fiber has a Yb concentration of 5.66 wt%, and absorption coefficient of 32 dB/cm at 980 nm. The figure of merit of the unsaturated absorption and gain per unit length of the YCDSF are 93% and 4.4 dB/cm, respectively. Based on the results of the numerical simulation, an all-fiber distributed Bragg reflector (DBR) laser using only a 1.5-cm-long YCDSF is experimentally demonstrated to have a maximum output power of 360 mW with a pump threshold power of 21 mW. The fiber laser also achieved an optical signal-to-noise ratio of 80 dB, a beam quality factor of 1.022 in two orthogonal directions and a slope efficiency of up to 50.5%. These results indicate that the all-fiber DBR laser has potential applications in high-quality seed sources and coherent optical communications.

10.
Int J Biol Macromol ; 163: 683-693, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32645493

ABSTRACT

Biopolymers such as chitosan and cellulose continue to attract much interest as they have many appealing characteristics such as biodegradability, biocompatibility, chemical versatility and natural functionality; however, many of their properties usually require further tailoring for specific purposes. This study shows that glycerol plasticisation and the addition of graphene oxide (GO) or reduced graphene oxide (rGO) altered the properties of chitosan and a chitosan/carboxymethyl cellulose (CMC) blend. For the chitosan/CMC matrix, GO or rGO was likely to disrupt polyelectrolyte complexation (PEC) between the two biopolymers, leading to weakened mechanical properties and increased surface hydrophilicity. Conversely, glycerol assisted PEC by increasing the biopolymer chain mobility, leading to reduced surface hydrophilicity. Moreover, some synergistic effects from a combination of glycerol and GO/rGO were evident. Specifically, GO/rGO notably increased the toughness of the chitosan film on inclusion of 40 wt% glycerol. Both GO and rGO reduced the relaxation temperatures of the chitosan/CMC film with 20 wt% glycerol added, resulting in increased biopolymer chain mobility. Moreover, the bionanocomposites showed high relative permittivity (54-387). Thus, this work describes how complex interactions in multiphasic biopolymer composite systems influence structure and properties.


Subject(s)
Chitosan/analogs & derivatives , Chitosan/chemistry , Glycerol/chemistry , Nanocomposites/chemistry , Plasticizers/chemistry , Biopolymers/chemistry , Chemical Phenomena , Electrochemistry , Mechanical Phenomena , Models, Theoretical , Molecular Conformation , Spectrum Analysis , Structure-Activity Relationship , Thermodynamics , Thermogravimetry
11.
Int J Biol Macromol ; 158: 420-429, 2020 May 03.
Article in English | MEDLINE | ID: mdl-32376251

ABSTRACT

Bionanocomposites of chitosan and chitosan/carboxymethyl cellulose (CMC) polyelectrolyte complexed materials with graphene oxide (GO) or reduced graphene oxide (rGO) were prepared by thermomechanical processing with excellent levels of dispersion. While GO has a greater affinity with the chitosan polycation, rGO had a more pronounced effect on properties resulting in increased tensile strength, Shore D hardness, and thermal stability of both matrices. Although GO is more hydrophilic than rGO, the former increased more effectively the surface hydrophobicity of the biocomposites regardless of matrix type. GO and rGO changed the α-transition of the biocomposites in a similar manner. The electrochemical properties of the biocomposites were influenced by both nanofiller type and matrix. This research revealed that inclusion of 2D carbon nanomaterials can alter biopolymer interactions and that the phase structure of the biopolymer blend may play a more important role than nanofiller-matrix interactions in determining the overall properties of these bionanocomposites.

12.
Sci Adv ; 6(15): eaav9634, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32284988

ABSTRACT

The time of origin of the geodynamo has important implications for the thermal evolution of the planetary interior and the habitability of early Earth. It has been proposed that detrital zircon grains from Jack Hills, Western Australia, provide evidence for an active geodynamo as early as 4.2 billion years (Ga) ago. However, our combined paleomagnetic, geochemical, and mineralogical studies on Jack Hills zircons indicate that most have poor magnetic recording properties and secondary magnetization carriers that postdate the formation of the zircons. Therefore, the existence of the geodynamo before 3.5 Ga ago remains unknown.

13.
ACS Appl Polym Mater ; 2(7): 2957-2966, 2020 Jul 10.
Article in English | MEDLINE | ID: mdl-33615230

ABSTRACT

This work describes the effects of different plasticizers, namely, glycerol, triacetin, and 1-ethyl-3-methylimidazolium acetate ([C2 mim][OAc]), on the structure and properties of thermomechanically processed, bulk chitosan and chitosan/alginate materials. Mechanical data shows that, for the chitosan matrix, glycerol and [C2 mim][OAc] were highly effective at reducing intra- and intermolecular forces between biopolymer chains, leading to increased ductility, while the plasticization effect of triacetin was minor. Nonetheless, this triester effectively suppressed biopolymer recrystallization, whereas [C2 mim][OAc] promoted it. In contrast, for the chitosan/alginate matrix, inclusion of triacetin resulted in increased recrystallization, higher thermal stability, and excellent mechanical properties. The triacetin assisted the interactions between biopolymer chains in this polyelectrolyte complexed system. In contrast, the chitosan/alginate material plasticized by [C2 mim][OAc] displayed the most apparent phase separation, poorest mechanical properties, and highest surface hydrophilicity, behavior associated with the disruption of polyelectrolyte complexation and hydrogen bonding between biopolymer chains. Interestingly, the formation of a "new structure" under the electron beam during microscopy imaging was observed, likely from coordination between alginate and [C2 mim][OAc]. Thus, this work has revealed the strong and unexpected effects of three different plasticizers on the hydrogen bonding and electrostatic interactions within chitosan/alginate polyelectrolyte complexed materials, which have potential for biomedical applications where balanced hydrophilicity and mechanical properties are required.

14.
Proc Natl Acad Sci U S A ; 116(2): 407-412, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30598434

ABSTRACT

Zircon crystals from the Jack Hills, Western Australia, are one of the few surviving mineralogical records of Earth's first 500 million years and have been proposed to contain a paleomagnetic record of the Hadean geodynamo. A prerequisite for the preservation of Hadean magnetization is the presence of primary magnetic inclusions within pristine igneous zircon. To date no images of the magnetic recorders within ancient zircon have been presented. Here we use high-resolution transmission electron microscopy to demonstrate that all observed inclusions are secondary features formed via two distinct mechanisms. Magnetite is produced via a pipe-diffusion mechanism whereby iron diffuses into radiation-damaged zircon along the cores of dislocations and is precipitated inside nanopores and also during low-temperature recrystallization of radiation-damaged zircon in the presence of an aqueous fluid. Although these magnetites can be recognized as secondary using transmission electron microscopy, they otherwise occur in regions that are indistinguishable from pristine igneous zircon and carry remanent magnetization that postdates the crystallization age by at least several hundred million years. Without microscopic evidence ruling out secondary magnetite, the paleomagnetic case for a Hadean-Eoarchean geodynamo cannot yet been made.

15.
ACS Appl Mater Interfaces ; 9(31): 26549-26555, 2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28695740

ABSTRACT

Understanding the energetics at the interface, including the alignment of valence and conduction bands, built-in potentials, and ionic and electronic reconstructions, is an important challenge in designing oxide interfaces that have controllable multifunctionalities for novel (opto-)electronic devices. In this work, we report detailed investigations on the heterointerface of wide-band-gap p-type NiO and n-type SrTiO3 (STO). We show that despite a large lattice mismatch (∼7%) and dissimilar crystal structure, high-quality NiO and Li-doped NiO (LNO) thin films can be epitaxially grown on STO(001) substrates through a domain-matching epitaxy mechanism. X-ray photoelectron spectroscopy studies indicate that NiO/STO heterojunctions form a type II "staggered" band alignment. In addition, a large built-in potential of up to 0.97 eV was observed at the interface of LNO and Nb-doped STO (NbSTO). The LNO/NbSTO p-n heterojunctions exhibit not only a large rectification ratio of 2 × 103 but also a large ideality factor of 4.3. The NiO/STO p-n heterojunctions have important implications for applications in photocatalysis and photodetectors as the interface provides favorable energetics for facile separation and transport of photogenerated electrons and holes.

16.
Nano Lett ; 16(12): 7779-7785, 2016 12 14.
Article in English | MEDLINE | ID: mdl-27960480

ABSTRACT

We demonstrate single-photon emission from self-assembled m-plane InGaN quantum dots (QDs) embedded on the side-walls of GaN nanowires. A combination of electron microscopy, cathodoluminescence, time-resolved microphotoluminescence (µPL), and photon autocorrelation experiments give a thorough evaluation of the QD structural and optical properties. The QD exhibits antibunched emission up to 100 K, with a measured autocorrelation function of g(2)(0) = 0.28(0.03) at 5 K. Studies on a statistically significant number of QDs show that these m-plane QDs exhibit very fast radiative lifetimes (260 ± 55 ps) suggesting smaller internal fields than any of the previously reported c-plane and a-plane QDs. Moreover, the observed single photons are almost completely linearly polarized aligned perpendicular to the crystallographic c-axis with a degree of linear polarization of 0.84 ± 0.12. Such InGaN QDs incorporated in a nanowire system meet many of the requirements for implementation into quantum information systems and could potentially open the door to wholly new device concepts.

17.
Sci Technol Adv Mater ; 17(1): 736-743, 2016.
Article in English | MEDLINE | ID: mdl-27933113

ABSTRACT

We report on a comparative study of the low temperature emission and polarisation properties of InGaN/GaN quantum wells grown on nonpolar ([Formula: see text]) a-plane and ([Formula: see text]) m-plane free-standing bulk GaN substrates where the In content varied from 0.14 to 0.28 in the m-plane series and 0.08 to 0.21 for the a-plane series. The low temperature photoluminescence spectra from both sets of samples are broad with full width at half maximum height increasing from 81 to 330 meV as the In fraction increases. Photoluminescence excitation spectroscopy indicates that the recombination mainly involves strongly localised carriers. At 10 K the degree of linear polarisation of the a-plane samples is much smaller than of the m-plane counterparts and also varies across the spectrum. From polarisation-resolved photoluminescence excitation spectroscopy we measured the energy splitting between the lowest valence sub-bands to lie in the range of 23-54 meV for the a- and m-plane samples in which we could observe distinct exciton features. Thus the thermal occupation of a higher valence sub-band cannot be responsible for the reduction of the degree of linear polarisation at 10 K. Time-resolved spectroscopy indicates that in a-plane samples there is an extra emission component which is at least partly responsible for the reduction in the degree of linear polarisation.

18.
Cryst Growth Des ; 16(2): 1010-1016, 2016 Feb 03.
Article in English | MEDLINE | ID: mdl-27065755

ABSTRACT

Non- and semipolar GaN have great potential to improve the efficiency of light emitting devices due to much reduced internal electric fields. However, heteroepitaxial GaN growth in these crystal orientations suffers from very high dislocation and stacking faults densities. Here, we report a facile method to obtain low defect density non- and semipolar heteroepitaxial GaN via selective area epitaxy using self-assembled multilayers of silica nanospheres (MSN). Nonpolar (11-20) and semipolar (11-22) GaN layers with high crystal quality have been achieved by epitaxial integration of the MSN and a simple one-step overgrowth process, by which both dislocation and basal plane stacking fault densities can be significantly reduced. The underlying defect reduction mechanisms include epitaxial growth through the MSN covered template, island nucleation via nanogaps in the MSN, and lateral overgrowth and coalescence above the MSN. InGaN/GaN multiple quantum wells structures grown on a nonpolar GaN/MSN template show more than 30-fold increase in the luminescence intensity compared to a control sample without the MSN. This self-assembled MSN technique provides a new platform for epitaxial growth of nitride semiconductors and offers unique opportunities for improving the material quality of GaN grown on other orientations and foreign substrates or heteroepitaxial growth of other lattice-mismatched materials.

19.
Microsc Microanal ; 21(3): 544-56, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25926083

ABSTRACT

Various practical issues affecting atom probe tomography (APT) analysis of III-nitride semiconductors have been studied as part of an investigation using a c-plane InAlN/GaN heterostructure. Specimen preparation was undertaken using a focused ion beam microscope with a mono-isotopic Ga source. This enabled the unambiguous observation of implantation damage induced by sample preparation. In the reconstructed InAlN layer Ga implantation was demonstrated for the standard "clean-up" voltage (5 kV), but this was significantly reduced by using a lower voltage (e.g., 1 kV). The characteristics of APT data from the desorption maps to the mass spectra and measured chemical compositions were examined within the GaN buffer layer underlying the InAlN layer in both pulsed laser and pulsed voltage modes. The measured Ga content increased monotonically with increasing laser pulse energy and voltage pulse fraction within the examined ranges. The best results were obtained at very low laser energy, with the Ga content close to the expected stoichiometric value for GaN and the associated desorption map showing a clear crystallographic pole structure.

20.
Ultramicroscopy ; 111(6): 493-9, 2011 May.
Article in English | MEDLINE | ID: mdl-21146304

ABSTRACT

Spatial Distribution Maps (SDM) in their various forms have previously been used to identify and characterize crystallographic structure within APT reconstructions. Importantly, it has been shown that such SDM analyses can also provide the crystallographic orientation of the specimen with respect to the direction of the detector in the original experiment. In this study, we investigate the application of SDMs to the analysis of APT reconstruction of a nanocrystalline Al film. We demonstrate that significant intra-granular crystallographic information is retained in the reconstruction, even in the x-y plane perpendicular to the direction of the detector. Further, the crystallographic orientation of the grains can be characterized highly accurately not only with respect to the bulk specimen but also their misorientation with respect to neighbouring grains.

SELECTION OF CITATIONS
SEARCH DETAIL
...