Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Eur J Nutr ; 53(1): 61-71, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23392621

ABSTRACT

PURPOSE: Few studies have focused on the metabolic changes induced by creatine supplementation. This study investigated the effects of creatine supplementation on plasma and urinary metabolite changes of athletes after endurance and sprint running. METHODS: Twelve male athletes (20.3 ± 1.4 y) performed two identical (65-70 % maximum heart rate reserved) 60 min running exercises (endurance trial) before and after creatine supplementation (12 g creatine monohydrate/day for 15 days), followed by a 5-day washout period. Subsequently, they performed two identical 100 m sprint running exercises (power trial) before and after 15 days of creatine supplementation in accordance with the supplementary protocol of the endurance trial. Body composition measurements were performed during the entire study. Plasma samples were examined for the concentrations of glucose, lactate, branched-chain amino acids (BCAAs), free-tryptophan (f-TRP), glutamine, alanine, hypoxanthine, and uric acid. Urinary samples were examined for the concentrations of hydroxyproline, 3-methylhistidine, urea nitrogen, and creatinine. RESULTS: Creatine supplementation significantly increased body weights of the athletes of endurance trial. Plasma lactate concentration and ratio of f-TRP/BCAAs after recovery from endurance running were significantly decreased with creatine supplementation. Plasma purine metabolites (the sum of hypoxanthine and uric acid), glutamine, urinary 3-methylhistidine, and urea nitrogen concentrations tended to decrease before running in trials with creatine supplements. After running, urinary hydroxyproline concentration significantly increased in the power trial with creatine supplements. CONCLUSIONS: The findings suggest that creatine supplementation tended to decrease muscle glycogen and protein degradation, especially after endurance exercise. However, creatine supplementation might induce collagen proteolysis in athletes after sprint running.


Subject(s)
Creatine/administration & dosage , Dietary Supplements , Physical Endurance/drug effects , Running/physiology , Sports Nutritional Physiological Phenomena , Adolescent , Amino Acids, Branched-Chain/blood , Athletes , Blood Glucose/metabolism , Body Height , Body Weight , Creatinine/urine , Homeostasis , Humans , Lactic Acid/metabolism , Male , Methylhistidines/urine , Nitrogen/urine , Physical Endurance/physiology , Young Adult
2.
J Am Coll Nutr ; 25(3): 188-94, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16766776

ABSTRACT

OBJECTIVE: The influence of branched-chain amino acid (BCAA) supplementation on urinary urea nitrogen, hydroxyproline (HP), and 3-methylhistidine (3MH) concentrations after 25 min of breast stroke exercise (65-70% maximum heart rate reserved, 65-70% HRRmax) followed by a 600 m crawl stroke competition was investigated in a double-blind, counter-balanced study. METHODS: Male university students (19-22 years old) majoring in physical education participated in the study. Based on the previous swimming time of a 600 m crawl stroke, the participants were divided into two groups: placebo (n = 9, BMI = 24.2 +/- 2.1 kg/m2; 12 g of glucose/day; in capsules) and BCAA (n = 10, BMI = 22.7 +/- 1.5 kg/m2; 12 g of BCAAs/day; in capsules: leucine 54%, isoleucine 19%, valine 27%) groups. The participants maintained a regular dietary intake (except the prescribed breakfast on day 15) and exercise activity at a moderate/low intensity (60-70% HRRmax, swimming and rowing, approximately 1.5 hour/day) during the 15-day study. A prescribed exercise program was performed on day 15. Urinary and blood samples were collected before, during, and after the prescribed exercise for the measurements of the urinary urea nitrogen, HP, and 3MH concentrations in urine, as well as the glucose, lactate, glutamine, alanine, and BCAA concentrations in plasma. RESULTS: Two weeks of dietary supplementation did not induce any changes in the plasma glucose and total BCAA concentrations of either group, nor in the urinary urea nitrogen, HP, and 3MH concentrations in urine. On day 15, after 25 min of breast stroke exercise and a 600 m crawl stroke competition, plasma glucose concentration decreased significantly (p < 0.05) whereas plasma lactate concentration increased significantly (p < 0.05) in both groups. The exercise program prescribed in the study did not affect urinary urea nitrogen, HP, and 3MH concentrations. Twenty hours after the competition, however, a significant increase in the concentrations of urinary urea nitrogen, HP, and 3MH was found in the placebo group (p < 0.05), but not in the BCAA group. CONCLUSIONS: The results obtained in this study suggest that swimming induced muscle proteolysis was prevented by BCAA supplementation. The mechanism could be attributed to the availability of ammonia provided by the oxidation of supplemented BCAAs during exercise.


Subject(s)
Amino Acids, Branched-Chain/administration & dosage , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Swimming , Urea/urine , Adult , Amino Acids, Branched-Chain/blood , Amino Acids, Branched-Chain/urine , Dietary Supplements , Double-Blind Method , Humans , Hydroxyproline/urine , Male , Methylhistidines/urine , Muscle, Skeletal/drug effects , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL