Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 23(10)2022 May 11.
Article in English | MEDLINE | ID: mdl-35628182

ABSTRACT

Hemoglobin (Hb) is the oxygen transport protein in erythrocytes. In blood, Hb is a tetramer consisting of two Hb-alpha (Hb-α) chains and two Hb-beta (Hb-ß) chains. A number of studies have also shown that Hb-α is also expressed in neurons in both the rodent and human brain. In the current study, we examined for age-related regulation of neuronal Hb-α and hypoxia in the hippocampus and cerebral cortex of intact male and female mice. In addition, to confirm the role and functions of neuronal Hb-α, we also utilized lentivirus CRISPR interference-based Hb-α knockdown (Hb-α CRISPRi KD) in the non-ischemic and ischemic mouse hippocampus and examined the effect on neuronal oxygenation, as well as induction of hypoxia-inducible factor-1α (HIF-1α) and its downstream pro-apoptotic factors, PUMA and NOXA, and on neuronal survival and neurodegeneration. The results of the study revealed an age-related decrease in neuronal Hb-α levels and correlated increase in hypoxia in the hippocampus and cortex of intact male and female mice. Sex differences were observed with males having higher neuronal Hb-α levels than females in all brain regions at all ages. In vivo Hb-α CRISPRi KD in the mouse hippocampus resulted in increased hypoxia and elevated levels of HIF-1α, PUMA and NOXA in the non-ischemic and ischemic mouse hippocampus, effects that were correlated with a significant decrease in neuronal survival and increased neurodegeneration. As a whole, these findings indicate that neuronal Hb-α decreases with age in mice and has an important role in regulating neuronal oxygenation and neuroprotection.


Subject(s)
Hemoglobins , Neurons , Animals , Cerebral Cortex/metabolism , Female , Hemoglobins/metabolism , Hippocampus/metabolism , Hypoxia/metabolism , Male , Mice , Neurons/metabolism
2.
Genesis ; 60(6-7): e23487, 2022 07.
Article in English | MEDLINE | ID: mdl-35633570

ABSTRACT

The Sigma 1 receptor (SIGMAR1) is a transmembrane protein located in the mitochondria-associated endoplasmic reticulum membrane, and plays an important role in cell survival as a pluripotent modulator of a variety of signaling pathways related to neurodegeneration. Though SIGMAR1 is a potential target for neurodegenerative diseases, the specific role of SIGMAR1 in different tissue and cell types remains unclear. Here we reported the generation of Sigmar1 conditional knockout (Sigmar1loxP ) mice using CRISPR-Cas9 method to insert loxP sites into the 5'- and 3'-untranslated regions of Sigmar1. We showed that the insertion of loxP sequences did not affect the expression of Sigmar1 and that Sigmar1loxP/loxP mice exhibited no detectable visual defects compared with wild-type mice at the early adult stage. By crossing Sigmar1loxP mice with retina-specific Six3-Cre and ubiquitous CMV-Cre mice, we confirmed the deletion of Sigmar1 coding regions of exons 1-4, and the retina-specific and global loss of SIGMAR1 expression, respectively. Thus, Sigmar1loxP mice provide a valuable tool for unraveling the tissue and cell-type-specific role of Sigmar1.


Subject(s)
CRISPR-Cas Systems , Gene Targeting , Animals , Mice , Mice, Knockout , Mitochondria/metabolism , Retina/metabolism
3.
Int J Mol Sci ; 22(16)2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34445101

ABSTRACT

Vps35 (vacuolar protein sorting 35) is a key component of retromer that consists of Vps35, Vps26, and Vps29 trimers, and sortin nexin dimers. Dysfunctional Vps35/retromer is believed to be a risk factor for development of various neurodegenerative diseases. Vps35Neurod6 mice, which selectively knock out Vps35 in Neurod6-Cre+ pyramidal neurons, exhibit age-dependent impairments in terminal differentiation of dendrites and axons of cortical and hippocampal neurons, neuro-degenerative pathology (i.e., increases in P62 and Tdp43 (TAR DNA-binding protein 43) proteins, cell death, and reactive gliosis), and neonatal death. The relationships among these phenotypes and the underlying mechanisms remain largely unclear. Here, we provide evidence that expression of low level of VPS35-mCherry fusion protein in Vps35Neurod6 mice could diminish the phenotypes in an age-dependent manner. Specifically, we have generated a conditional transgenic mouse line, LSL-Vps35-mCherry, which expresses VPS35-mCherry fusion protein in a Cre-dependent manner. Crossing LSL-Vps35-mCherry with Vps35Neurod6 to obtain TgVPS35-mCherry, Vps35Neurod6 mice prevent the neonatal death and diminish the dendritic morphogenesis deficit and gliosis at the neonatal, but not the adult age. Further studies revealed that the Vps35-mCherry transgene expression was low, and the level of Vps35 mRNA comprised only ~5-7% of the Vps35 mRNA of control mice. Such low level of VPS35-mCherry could restore the amount of other retromer components (Vps26a and Vps29) at the neonatal age (P14). Importantly, the neurodegenerative pathology presented in the survived adult TgVps35-mCherry; Vps35Neurod6 mice. These results demonstrate the sufficiency of low level of VPS35-mCherry fusion protein to diminish the phenotypes in Vps35Neurod6 mice at the neonatal age, verifying a key role of neuronal Vps35 in stabilizing retromer complex proteins, and supporting the view for Vps35 as a potential therapeutic target for neurodegenerative diseases.


Subject(s)
Neurodegenerative Diseases/genetics , Neurogenesis , Neurons/pathology , Vesicular Transport Proteins/genetics , Animals , Animals, Newborn , Female , Gene Knockout Techniques , Humans , Infant, Newborn , Luminescent Proteins/genetics , Male , Mice , Mice, Inbred C57BL , Neurodegenerative Diseases/pathology , Neurons/cytology , Neurons/metabolism , Perinatal Death , Recombinant Fusion Proteins/genetics , Red Fluorescent Protein
4.
Biol Psychiatry ; 89(6): 600-614, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33183762

ABSTRACT

BACKGROUND: Dentate gyrus (DG), a "gate" that controls information flow into the hippocampus, plays important roles in regulating both cognitive (e.g., spatial learning and memory) and mood behaviors. Deficits in DG neurons contribute to the pathogenesis of not only neurological, but also psychiatric, disorders, such as anxiety disorder. Whereas DG's function in spatial learning and memory has been extensively investigated, its role in regulating anxiety remains elusive. METHODS: Using c-Fos to mark DG neuron activation, we identified a group of embryonic born dorsal DG (dDG) neurons, which were activated by anxiogenic stimuli and specifically express osteocalcin (Ocn)-Cre. We further investigated their functions in regulating anxiety and the underlying mechanisms by using a combination of chemogenetic, electrophysiological, and RNA-sequencing methods. RESULTS: The Ocn-Cre+ dDG neurons were highly active in response to anxiogenic environment but had lower excitability and fewer presynaptic inputs than those of Ocn-Cre- or adult born dDG neurons. Activating Ocn-Cre+ dDG neurons suppressed anxiety-like behaviors and increased adult DG neurogenesis, whereas ablating or chronically inhibiting Ocn-Cre+ dDG neurons exacerbated anxiety-like behaviors, impaired adult DG neurogenesis, and abolished activity (e.g., voluntary wheel running)-induced anxiolytic effect and adult DG neurogenesis. RNA-sequencing screening for factors induced by activation of Ocn-Cre+ dDG neurons identified BDNF, which was required for Ocn-Cre+ dDG neurons mediated antianxiety-like behaviors and adult DG neurogenesis. CONCLUSIONS: These results demonstrate critical functions of Ocn-Cre+ dDG neurons in suppressing anxiety-like behaviors but promoting adult DG neurogenesis, and both functions are likely through activation of BDNF.


Subject(s)
Brain-Derived Neurotrophic Factor , Motor Activity , Dentate Gyrus , Hippocampus , Neurogenesis , Neurons
5.
J Neurochem ; 156(6): 819-833, 2021 03.
Article in English | MEDLINE | ID: mdl-32743804

ABSTRACT

Ganglioside GD3, a major ganglioside species in neural stem cells, plays a crucial role in maintenance of the self-renewal capacity of these cells. However, its bioactivity in postnatally differentiated neurons in the neurogenic regions of adult brains has not been elucidated. Here, we describe for the first time that deletion of GD3 not only impairs neurotrophin-induced stem cell proliferation, but also alters the dendritic structure as well as the number of synapses of nascent neurons in the dentate gyrus of adult brain. When examining the behavioral phenotypes, GD3 synthase-knockout (GD3S-KO) mice displayed impairment in hippocampus-dependent memory function. To further gain insight into its cellular function, we examined GD3-binding partners from mouse brain extract using a GD3-specific monoclonal antibody, R24, followed by LC-MS/MS analysis and identified a mitochondrial fission protein, the dynamin-related protein-1 (Drp1), as a novel GD3-binding protein. Biochemical and imaging analyses revealed mitochondrial fragmentation in GD3-depleted dentate gyrus neurons, suggesting that GD3 is essential for the mitochondrial Drp1 turnover that is required for efficient mitochondrial fission. These results suggest that GD3 is required for proper dendritic and spine maturation of newborn neurons in adult brain through the regulation of mitochondrial dynamics.


Subject(s)
Dendrites/physiology , Gangliosides/physiology , Hippocampus/growth & development , Hippocampus/physiology , Mitochondria/physiology , Neural Stem Cells/physiology , Neurons/physiology , Animals , Antibodies, Blocking/pharmacology , Antibodies, Monoclonal , Behavior, Animal , Cognition , Dendritic Spines/physiology , Dynamins/genetics , Dynamins/physiology , Gangliosides/antagonists & inhibitors , Gangliosides/genetics , Memory Disorders/genetics , Memory Disorders/psychology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/ultrastructure , Mitochondrial Dynamics
6.
J Neurosci ; 40(50): 9751-9771, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33158962

ABSTRACT

Expression of the 17ß-estradiol (E2) synthesis enzyme aromatase is highly upregulated in astrocytes following brain injury. However, the precise role of astrocyte-derived E2 in the injured brain remains unclear. In the current study, we generated a glial fibrillary acidic protein (GFAP) promoter-driven aromatase knock-out (GFAP-ARO-KO) mouse model to deplete astrocyte-derived E2 in the brain and determine its roles after global cerebral ischemia (GCI) in male and female mice. GFAP-ARO-KO mice were viable and fertile, with normal gross brain structure, normal morphology, intensity and distribution of astrocytes, normal aromatase expression in neurons, and normal cognitive function basally. In contrast, after GCI, GFAP-ARO-KO mice: (1) lacked the normal elevation of astrocyte aromatase and hippocampal E2 levels; (2) had significantly attenuated reactive astrogliosis; and (3) displayed enhanced neuronal damage, microglia activation, and cognitive deficits. RNA-sequencing (RNA-seq) analysis revealed that the ischemic GFAP-ARO-KO mouse hippocampus failed to upregulate the "A2" panel of reactive astrocyte genes. In addition, the JAK-STAT3 pathway, which is critical for the induction of reactive astrogliosis, was significantly downregulated in the GFAP-ARO-KO hippocampus following GCI. Finally, exogenous E2 administration fully rescued the compromised JAK-STAT3 pathway and reactive astrogliosis, and reversed the enhanced neuronal damage and microglial activation in the GFAP-ARO-KO mice after GCI, suggesting that the defects in the KO mice are because of a loss of E2 rather than an increase in precursor androgens. In conclusion, the current study provides novel genetic evidence for a beneficial role of astrocyte-derived E2 in reactive astrogliosis, microglial activation, and neuroprotection following an ischemic injury to the brain.SIGNIFICANCE STATEMENT Following cerebral ischemia, reactive astrocytes express the enzyme aromatase and produce 17ß-estradiol (E2), although the precise role of astrocyte-derived E2 is poorly understood. In this study, we generated a glial fibrillary acidic protein (GFAP) promoter-driven aromatase knock-out (GFAP-ARO-KO) mouse to deplete astrocyte-derived E2 and elucidate its roles after global cerebral ischemia (GCI). The GFAP-ARO-KO mice exhibited significantly attenuated reactive astrogliosis, as well as enhanced microglial activation, neuronal damage, and cognitive dysfunction after GCI. Transcriptome analysis further revealed that astrocyte-derived E2 was critical for the induction of the JAK-STAT3 signaling pathway, as well as the A2 reactive astrocyte phenotype after ischemia. Collectively, these findings indicate that astrocyte-derived E2 has a key role in the regulation of reactive astrogliosis, microglial activation, and neuroprotection after cerebral ischemia.


Subject(s)
Aromatase/genetics , Astrocytes/metabolism , Brain Ischemia/metabolism , Estradiol/metabolism , Gliosis/metabolism , Hippocampus/metabolism , Animals , Aromatase/metabolism , Astrocytes/drug effects , Astrocytes/pathology , Brain Ischemia/genetics , Brain Ischemia/pathology , Conditioning, Classical/physiology , Disease Models, Animal , Estradiol/pharmacology , Glial Fibrillary Acidic Protein/metabolism , Gliosis/genetics , Gliosis/pathology , Hippocampus/drug effects , Hippocampus/pathology , Mice , Mice, Knockout , Neurons/drug effects , Neurons/metabolism , Neuroprotection/physiology , Signal Transduction/drug effects , Signal Transduction/physiology
7.
J Neurosci ; 40(38): 7355-7374, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32817249

ABSTRACT

17ß-Estradiol (E2) is produced from androgens via the action of the enzyme aromatase. E2 is known to be made in neurons in the brain, but the functions of neuron-derived E2 in the ischemic brain are unclear. Here, we used a forebrain neuron-specific aromatase KO (FBN-ARO-KO) mouse model to deplete neuron-derived E2 in the forebrain and determine its roles after global cerebral ischemia. We demonstrated that ovariectomized female FBN-ARO-KO mice exhibited significantly attenuated astrocyte activation, astrocytic aromatization, and decreased hippocampal E2 levels compared with FLOX mice. Furthermore, FBN-ARO-KO mice had exacerbated neuronal damage and worse cognitive dysfunction after global cerebral ischemia. Similar results were observed in intact male mice. RNA-seq analysis revealed alterations in pathways and genes associated with astrocyte activation, neuroinflammation, and oxidative stress in FBN-ARO-KO mice. The compromised astrocyte activation in FBN-ARO-KO mice was associated with robust downregulation of the astrocyte-derived neurotrophic factors, BDNF and IGF-1, as well as the astrocytic glutamate transporter, GLT-1. Νeuronal FGF2, which acts in a paracrine manner to suppress astrocyte activation, was increased in FBN-ARO-KO neurons. Interestingly, blocking FGF2 signaling by central injection of FGFR3-neutralizing antibody was able to reverse the diminishment in neuroprotective astrocyte reactivity, and attenuate neuronal damage in FBN-ARO-KO mice. Moreover, in vivo E2 replacement suppressed FGF2 signaling and rescued the compromised reactive astrogliosis and cognitive deficits. Collectively, our data provide novel genetic evidence for a beneficial role of neuron-derived E2 in astrocyte activation, neuroprotection, and cognitive preservation following ischemic injury to the brain.SIGNIFICANCE STATEMENT Following cerebral ischemia, astrocytes become highly reactive and can exert neuroprotection through the release of neurotrophic factors and clearance of neurotoxic glutamate. The current study advances our understanding of this process by demonstrating that neuron-derived 17ß-estradiol (E2) is neuroprotective and critical for induction of reactive astrocytes and their ability to produce astrocyte-derived neurotrophic factors, BDNF and IGF-1, and the glutamate transporter, GLT-1 after ischemic brain damage. These beneficial effects of neuron-derived E2 appear to be due, at least in part, to suppression of neuronal FGF2 signaling, which is a known suppressor of astrocyte activation. These findings suggest that neuron-derived E2 is neuroprotective after ischemic brain injury via a mechanism that involves suppression of neuronal FGF2 signaling, thereby facilitating astrocyte activation.


Subject(s)
Astrocytes/metabolism , Brain Ischemia/metabolism , Estrogens/metabolism , Gliosis/metabolism , Neurons/metabolism , Paracrine Communication , Animals , Aromatase/genetics , Aromatase/metabolism , Brain Ischemia/pathology , Brain-Derived Neurotrophic Factor/metabolism , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/metabolism , Cells, Cultured , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Excitatory Amino Acid Transporter 2/metabolism , Female , Fibroblast Growth Factor 2/metabolism , Insulin-Like Growth Factor I/metabolism , Male , Mice , Oxidative Stress
8.
ASN Neuro ; 12: 1759091420938175, 2020.
Article in English | MEDLINE | ID: mdl-32664815

ABSTRACT

Ganglioside GM3 synthase (α-2,3-sialyltransferase, ST3GAL5, GM3S) is a key enzyme involved in the biosynthesis of gangliosides. ST3GAL5 deficiency causes an absence of GM3 and all downstream biosynthetic derivatives. The affected individuals manifest deafness, severe irritability, intractable seizures, and profound intellectual disability. To investigate whether deficiency of GM3 is involved in seizure susceptibility, we induced seizures with different chemoconvulsants in ST3GAL5 knockout mice. We report here that ST3GAL5 knockout mice are hyperactive and more susceptible to seizures induced by chemoconvulsants, including kainate and pilocarpine, compared with normal controls. In the hippocampal dentate gyrus, loss of GM3 aggravates seizure-induced aberrant neurogenesis. These data indicate that GM3 and gangliosides derived from GM3 may serve as important regulators of epilepsy and may play an important role in aberrant neurogenesis associated with seizures.


Subject(s)
Pilocarpine/toxicity , Seizures/chemically induced , Seizures/enzymology , Sialyltransferases/deficiency , Animals , Dentate Gyrus/drug effects , Dentate Gyrus/enzymology , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Seizures/genetics , Sialyltransferases/genetics
9.
J Neurosci ; 40(19): 3862-3879, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32291328

ABSTRACT

Hydrocephalus is a pathologic condition associated with various brain diseases, including Alzheimer's disease (AD). Dysfunctional ependymal cells (EpCs) are believed to contribute to the development of hydrocephalus. It is thus of interest to investigate EpCs' development and function. Here, we report that vacuolar protein sorting-associated protein 35 (VPS35) is critical for EpC differentiation, ciliogenesis, and survival, and thus preventing neonatal hydrocephalus. VPS35 is abundantly expressed in EpCs. Mice with conditional knock-out (cKO) of Vps35 in embryonic (Vps35GFAP-Cre and Vps35Emx1-Cre) or postnatal (Vps35Foxj1-CreER) EpC progenitors exhibit enlarged lateral ventricles (LVs) and hydrocephalus-like pathology. Further studies reveal marked reductions in EpCs and their cilia in both Vps35GFAP-Cre and Vps35Foxj1-CreER mutant mice. The reduced EpCs appear to be due to impairments in EpC differentiation and survival. Additionally, both Vps35GFAP-Cre and Vps35Foxj1-CreER neonatal pups exhibit increased cell proliferation and death largely in a region close to LV-EpCs. Many microglia close to the mutant LV-EpC region become activated. Depletion of the microglia by PLX3397, an antagonist of colony-stimulating factor 1 receptor (CSF1R), restores LV-EpCs and diminishes the pathology of neonatal hydrocephalus in Vps35Foxj1-CreER mice. Taken together, these observations suggest unrecognized functions of Vps35 in EpC differentiation, ciliogenesis, and survival in neonatal LV, and reveal pathologic roles of locally activated microglia in EpC homeostasis and hydrocephalus development.SIGNIFICANCE STATEMENT This study reports critical functions of vacuolar protein sorting-associated protein 35 (VPS35) not only in promoting ependymal cell (EpC) differentiation, ciliogenesis, and survival, but also in preventing local microglial activation. The dysfunctional EpCs and activated microglia are likely to induce hydrocephalus.


Subject(s)
Ependyma/metabolism , Ependymoglial Cells/metabolism , Hydrocephalus/metabolism , Microglia/metabolism , Vesicular Transport Proteins/metabolism , Animals , Animals, Newborn , Cell Differentiation/physiology , Cell Survival , Ependyma/cytology , Hydrocephalus/physiopathology , Mice , Mice, Knockout
10.
Cell Death Differ ; 27(7): 2099-2116, 2020 07.
Article in English | MEDLINE | ID: mdl-31907392

ABSTRACT

Vps35 (vacuolar protein sorting 35) is a key component of retromer that regulates transmembrane protein trafficking. Dysfunctional Vps35 is a risk factor for neurodegenerative diseases, including Parkinson's and Alzheimer's diseases. Vps35 is highly expressed in developing pyramidal neurons, and its physiological role in developing neurons remains to be explored. Here, we provide evidence that Vps35 in embryonic neurons is necessary for axonal and dendritic terminal differentiation. Loss of Vps35 in embryonic neurons results in not only terminal differentiation deficits, but also neurodegenerative pathology, such as cortical brain atrophy and reactive glial responses. The atrophy of neocortex appears to be in association with increases in neuronal death, autophagosome proteins (LC3-II and P62), and neurodegeneration associated proteins (TDP43 and ubiquitin-conjugated proteins). Further studies reveal an increase of retromer cargo protein, sortilin1 (Sort1), in lysosomes of Vps35-KO neurons, and lysosomal dysfunction. Suppression of Sort1 diminishes Vps35-KO-induced dendritic defects. Expression of lysosomal Sort1 recapitulates Vps35-KO-induced phenotypes. Together, these results demonstrate embryonic neuronal Vps35's function in terminal axonal and dendritic differentiation, reveal an association of terminal differentiation deficit with neurodegenerative pathology, and uncover an important lysosomal contribution to both events.


Subject(s)
Cell Differentiation , Nerve Degeneration/pathology , Pyramidal Cells/metabolism , Pyramidal Cells/pathology , Vesicular Transport Proteins/deficiency , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Animals, Newborn , Astrocytes/metabolism , Astrocytes/pathology , Autophagosomes/metabolism , Axons/metabolism , Axons/pathology , Cell Line , Dendrites/metabolism , Dendrites/pathology , Embryo, Mammalian/metabolism , Lysosomes/metabolism , Mice, Inbred C57BL , Mice, Knockout , Morphogenesis , Neocortex/pathology , Neuroglia/metabolism , Neuroglia/pathology , Vesicular Transport Proteins/metabolism
11.
J Neuroinflammation ; 16(1): 235, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31771656

ABSTRACT

BACKGROUND: Vacuolar sorting protein 35 (VPS35), a critical component of retromer, is essential for selective endosome-to-Golgi retrieval of membrane proteins. It is highly expressed in microglial cells, in addition to neurons. We have previously demonstrated microglial VPS35's functions in preventing hippocampal, but not cortical, microglial activation, and in promoting adult hippocampal neurogenesis. However, microglial VPS35's role in the cortex in response to ischemic stroke remains largely unclear. METHODS: We used mice with VPS35 cKO (conditional knockout) in microglial cells and examined and compared their responses to ischemic stroke with control mice. The brain damage, cell death, changes in glial cells and gene expression, and sensorimotor deficits were assessed by a combination of immunohistochemical and immunofluorescence staining, RT-PCR, Western blot, and neurological functional behavior tests. RESULTS: We found that microglial VPS35 loss results in an increase of anti-inflammatory microglia in mouse cortex after ischemic stroke. The ischemic stroke-induced brain injury phenotypes, including brain damage, neuronal death, and sensorimotor deficits, were all attenuated by microglial VPS35-deficiency. Further analysis of protein expression changes revealed a reduction in CX3CR1 (CX3C chemokine receptor 1) in microglial VPS35-deficient cortex after ischemic stroke, implicating CX3CR1 as a potential cargo of VPS35 in this event. CONCLUSION: Together, these results reveal an unrecognized function of microglial VPS35 in enhancing ischemic brain injury-induced inflammatory microglia, but suppressing the injury-induced anti-inflammatory microglia. Consequently, microglial VPS35 cKO mice exhibit attenuation of ischemic brain injury response.


Subject(s)
Brain Ischemia/metabolism , Cell Polarity/physiology , Microglia/metabolism , Sensorimotor Cortex/metabolism , Stroke/metabolism , Vesicular Transport Proteins/metabolism , Animals , Brain Ischemia/genetics , Brain Ischemia/pathology , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism , Cell Death/physiology , Disease Models, Animal , Gliosis/genetics , Gliosis/metabolism , Gliosis/pathology , Mice , Mice, Knockout , Motor Skills/physiology , Sensorimotor Cortex/pathology , Stroke/genetics , Stroke/pathology , Vesicular Transport Proteins/genetics
12.
Cells ; 8(5)2019 05 17.
Article in English | MEDLINE | ID: mdl-31108937

ABSTRACT

ß-site APP-cleaving enzyme 1 (BACE1) initiates amyloid precursor protein (APP) cleavage and ß-amyloid (Aß) production, a critical step in the pathogenesis of Alzheimer's disease (AD). It is thus of considerable interest to investigate how BACE1 activity is regulated. BACE1 has its maximal activity at acidic pH and GFP variant-pHluorin-displays pH dependence. In light of these observations, we generated three tandem fluorescence-tagged BACE1 fusion proteins, named pHluorin-BACE1-mCherry, BACE1-mCherry-pHluorin and BACE1-mCherry-EGFP. Comparing the fluorescence characteristics of these proteins in response to intracellular pH changes induced by chloroquine or bafilomycin A1, we found that pHluorin-BACE1-mCherry is a better pH sensor for BACE1 because its fluorescence intensity responds to pH changes more dramatically and more quickly. Additionally, we found that (pro)renin receptor (PRR), a subunit of the v-ATPase complex, which is critical for maintaining vesicular pH, regulates pHluorin's fluorescence and BACE1 activity in pHluorin-BACE1-mCherry expressing cells. Finally, we found that the expression of Swedish mutant APP (APPswe) suppresses pHluorin fluorescence in pHluorin-BACE1-mCherry expressing cells in culture and in vivo, implicating APPswe not only as a substrate but also as an activator of BACE1. Taken together, these results suggest that the pHluorin-BACE1-mCherry fusion protein may serve as a useful tool for visualizing active/inactive BACE1 in culture and in vivo.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Green Fluorescent Proteins/metabolism , Luminescent Proteins/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Cell Line, Tumor , Chloroquine/pharmacology , Female , Fluorescence , HEK293 Cells , Humans , Hydrogen-Ion Concentration/drug effects , Macrolides/pharmacology , Male , Mice , Receptors, Cell Surface/metabolism , Transfection , Vacuolar Proton-Translocating ATPases/metabolism , Red Fluorescent Protein
13.
Cell Death Dis ; 9(11): 1077, 2018 10 22.
Article in English | MEDLINE | ID: mdl-30349052

ABSTRACT

Amyloid precursor protein (APP) is ubiquitously expressed in various types of cells including bone cells. Mutations in App gene result in early-onset Alzheimer's disease (AD). However, little is known about its physiological function in bone homeostasis. Here, we provide evidence for APP's role in promoting bone formation. Mice that knocked out App gene (APP-/-) exhibit osteoporotic-like deficit, including reduced trabecular and cortical bone mass. Such a deficit is likely due in large to a decrease in osteoblast (OB)-mediated bone formation, as little change in bone resorption was detected in the mutant mice. Further mechanical studies of APP-/- OBs showed an impairment in mitochondrial function, accompanied with increased reactive oxygen species (ROS) and apoptosis. Intriguingly, these deficits, resemble to those in Tg2576 animal model of AD that expresses Swedish mutant APP (APPswe), were diminished by treatment with an anti-oxidant NAC (n-acetyl-l-cysteine), uncovering ROS as a critical underlying mechanism. Taken together, these results identify an unrecognized physiological function of APP in promoting OB survival and bone formation, implicate APPswe acting as a dominant negative factor, and reveal a potential clinical value of NAC in treatment of AD-associated osteoporotic deficits.


Subject(s)
Amyloid beta-Peptides/metabolism , Mitochondria/metabolism , Mitochondria/physiology , Osteoblasts/metabolism , Osteoblasts/physiology , Osteogenesis/physiology , Oxidative Stress/physiology , Acetylcysteine/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Amyloid beta-Protein Precursor/metabolism , Animals , Antioxidants/metabolism , Apoptosis/physiology , Bone Resorption/metabolism , Bone Resorption/physiopathology , Bone and Bones/metabolism , Bone and Bones/physiopathology , Brain/metabolism , Brain/physiopathology , Cells, Cultured , Disease Models, Animal , Mice , Mice, Inbred C57BL , Mice, Transgenic , Reactive Oxygen Species/metabolism
14.
J Neurosci ; 38(26): 5949-5968, 2018 06 27.
Article in English | MEDLINE | ID: mdl-29853629

ABSTRACT

Vacuolar sorting protein 35 (VPS35) is a critical component of retromer, which is essential for selective endosome-to-Golgi retrieval of membrane proteins. VPS35 deficiency is implicated in neurodegenerative disease pathology, including Alzheimer's disease (AD). However, exactly how VPS35 loss promotes AD pathogenesis remains largely unclear. VPS35 is expressed in various types of cells in the brain, including neurons and microglia. Whereas neuronal VPS35 plays a critical role in preventing neurodegeneration, the role of microglial VPS35 is largely unknown. Here we provide evidence for microglial VPS35's function in preventing microglial activation and promoting adult hippocampal neurogenesis. VPS35 is expressed in microglia in various regions of the mouse brain, with a unique distribution pattern in a brain region-dependent manner. Conditional knocking out of VPS35 in microglia of male mice results in regionally increased microglial density and activity in the subgranular zone of the hippocampal dentate gyrus (DG), accompanied by elevated neural progenitor proliferation, but decreased neuronal differentiation. Additionally, newborn neurons in the mutant DG show impaired dendritic morphology and reduced dendritic spine density. When examining the behavioral phenotypes of these animals, microglial VPS3S-depleted mice display depression-like behavior and impairment in long-term recognition memory. At the cellular level, VPS35-depleted microglia have grossly enlarged vacuolar structures with increased phagocytic activity toward postsynaptic marker PSD95, which may underlie the loss of dendritic spines observed in the mutant DG. Together, these findings identify an important role of microglial VPS35 in suppressing microglial activation and promoting hippocampal neurogenesis, which are both processes involved in AD pathogenesis.SIGNIFICANCE STATEMENT The findings presented here provide the first in vivo evidence that Vacuolar sorting protein 35 (VPS35)/retromer is essential for regulating microglial function and that when microglial retromer mechanics are disrupted, the surrounding brain tissue can be affected in a neurodegenerative manner. These findings present a novel, microglial-specific role of VPS35 and raise multiple questions regarding the mechanisms underlying our observations. These findings also have myriad implications for the field of retromer research and the role of retromer dysfunction in neurodegenerative pathophysiology. Furthermore, they implicate a pivotal role of microglia in the regulation of adult hippocampal neurogenesis and the survival/integration of newborn neurons in the adult hippocampus.


Subject(s)
Depression/metabolism , Hippocampus/metabolism , Microglia/metabolism , Neurogenesis/physiology , Animals , Cell Differentiation/physiology , Hippocampus/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/pathology , Neurons/metabolism , Neurons/pathology , Vesicular Transport Proteins
15.
Bone Res ; 6: 18, 2018.
Article in English | MEDLINE | ID: mdl-29872550

ABSTRACT

YAP (yes-associated protein) is a transcriptional factor that is negatively regulated by Hippo pathway, a conserved pathway for the development and size control of multiple organs. The exact function of YAP in bone homeostasis remains controversial. Here we provide evidence for YAP's function in promoting osteogenesis, suppressing adipogenesis, and thus maintaining bone homeostasis. YAP is selectively expressed in osteoblast (OB)-lineage cells. Conditionally knocking out Yap in the OB lineage in mice reduces cell proliferation and OB differentiation and increases adipocyte formation, resulting in a trabecular bone loss. Mechanistically, YAP interacts with ß-catenin and is necessary for maintenance of nuclear ß-catenin level and Wnt/ß-catenin signaling. Expression of ß-catenin in YAP-deficient BMSCs (bone marrow stromal cells) diminishes the osteogenesis deficit. These results thus identify YAP-ß-catenin as an important pathway for osteogenesis during adult bone remodeling and uncover a mechanism underlying YAP regulation of bone homeostasis.

16.
Cell Death Dis ; 9(1): 8, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29311593

ABSTRACT

Adult neurogenesis in hippocampal dentate gyrus (DG) is a complex, but precisely controlled process. Dysregulation of this event contributes to multiple neurological disorders, including major depression. Thus, it is of considerable interest to investigate how adult hippocampal neurogenesis is regulated. Here, we present evidence for neogenin, a multifunctional transmembrane receptor, to regulate adult mouse hippocampal neurogenesis. Loss of neogenin in adult neural stem cells (NSCs) or neural progenitor cells (NPCs) impaired NSCs/NPCs proliferation and neurogenesis, whereas increased their astrocytic differentiation. Mechanistic studies revealed a role for neogenin to positively regulate Gli1, a crucial downstream transcriptional factor of sonic hedgehog, and expression of Gli1 into neogenin depleted NSCs/NPCs restores their proliferation. Further morphological and functional studies showed additional abnormities, including reduced dendritic branches and spines, and impaired glutamatergic neuro-transmission, in neogenin-depleted new-born DG neurons; and mice with depletion of neogenin in NSCs/NPCs exhibited depressive-like behavior. These results thus demonstrate unrecognized functions of neogenin in adult hippocampal NSCs/NPCs-promoting NSCs/NPCs proliferation and neurogenesis and preventing astrogliogenesis and depressive-like behavior, and suggest neogenin regulation of Gli1 signaling as a possible underlying mechanism.


Subject(s)
Depressive Disorder/prevention & control , Membrane Proteins/genetics , Neurogenesis , Animals , Cell Proliferation , Cells, Cultured , Dentate Gyrus/drug effects , Dentate Gyrus/metabolism , Dentate Gyrus/pathology , Depressive Disorder/pathology , Excitatory Postsynaptic Potentials/drug effects , Hedgehog Proteins/metabolism , Hippocampus/cytology , Male , Maze Learning/drug effects , Membrane Proteins/deficiency , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neurogenesis/drug effects , Tamoxifen/pharmacology , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/metabolism
17.
Stroke ; 49(1): 165-174, 2018 01.
Article in English | MEDLINE | ID: mdl-29212737

ABSTRACT

BACKGROUND AND PURPOSE: Lrp4 (low-density lipoprotein receptor-related protein 4) is predominantly expressed in astrocytes, where it regulates glutamatergic neurotransmission by suppressing ATP release. Here, we investigated Lrp4's function in ischemia/stroke-induced brain injury response, which includes glutamate-induced neuronal death and reactive astrogliosis. METHODS: The brain-specific Lrp4 conditional knockout mice (Lrp4GFAP-Cre), astrocytic-specific Lrp4 conditional knockout mice (Lrp4GFAP-creER), and their control mice (Lrp4f/f) were subjected to photothrombotic ischemia and the transient middle cerebral artery occlusion. After ischemia/stroke, mice or their brain samples were subjected to behavior tests, brain histology, immunofluorescence staining, Western blot, and quantitative real-time polymerase chain reaction. In addition, primary astrocytes and neurons were cocultured with or without oxygen and glucose deprivation and in the presence or absence of the antagonist for adenosine-A2AR (adenosine A2A receptor) or ATP-P2X7R (P2X purinoceptor 7) signaling. Gliotransmitters, such as glutamate, d-serine, ATP, and adenosine, in the condition medium of cultured astrocytes were also measured. RESULTS: Lrp4, largely expressed in astrocytes, was increased in response to ischemia/stroke. Both Lrp4GFAP-Cre and Lrp4GFAP-creER mice showed less brain injury, including reduced neuronal death, and impaired reactive astrogliosis. Mechanistically, Lrp4 conditional knockout in astrocytes increased ATP release and the production of ATP derivative, adenosine, which were further elevated by oxygen and glucose deprivation. Pharmacological inhibition of ATP-P2X7R or adenosine-A2AR signaling diminished Lrp4GFAP-creER's protective effect. CONCLUSIONS: The astrocytic Lrp4 plays an important role in ischemic brain injury response. Lrp4 deficiency in astrocytes seems to be protective in response to ischemic brain injury, likely because of the increased ATP release and adenosine-A2AR signaling.


Subject(s)
Adenosine Triphosphate/metabolism , Astrocytes/metabolism , Brain Injuries/metabolism , Brain Ischemia/metabolism , Receptor, Adenosine A2A/metabolism , Receptors, LDL/metabolism , Signal Transduction , Adenosine Triphosphate/genetics , Animals , Astrocytes/pathology , Brain Injuries/genetics , Brain Injuries/pathology , Brain Ischemia/genetics , Brain Ischemia/pathology , LDL-Receptor Related Proteins , Mice , Mice, Knockout , Receptor, Adenosine A2A/genetics , Receptors, LDL/genetics , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/metabolism
18.
PLoS One ; 12(9): e0184906, 2017.
Article in English | MEDLINE | ID: mdl-28934248

ABSTRACT

Vps35 (vacuolar protein sorting 35) is a major component of retromer that selectively promotes endosome-to-Golgi retrieval of transmembrane proteins. Dysfunction of retromer is a risk factor for the pathogenesis of Parkinson's disease (PD) and Alzheimer's disease (AD). However, Vps35/retromer's function in the eye or the contribution of Vps35-deficiency to eye degenerative disorders remains to be explored. Here we provide evidence for a critical role of Vps35 in mouse corneal dystrophy. Vps35 is expressed in mouse and human cornea. Mouse cornea from Vps35 heterozygotes (Vps35+/-) show features of dystrophy, such as loss of both endothelial and epithelial cell densities, disorganizations of endothelial, stroma, and epithelial cells, excrescences in the Descemet membrane, and corneal edema. Additionally, corneal epithelial cell proliferation was reduced in Vps35-deficient mice. Intriguingly, cell surface targeting of SLC4A11, a membrane transport protein (OH- /H+ /NH3 /H2O) of corneal endothelium, whose mutations have been identified in patients with corneal dystrophy, was impaired in Vps35-deficient cells and cornea. Taken together, these results suggest that SLC4A11 appears to be a Vps35/retromer cargo, and Vps35-regulation of SLC4A11 trafficking may underlie Vps35/retromer regulation of corneal dystrophy.


Subject(s)
Anion Transport Proteins/metabolism , Biological Transport, Active/physiology , Cornea/metabolism , Corneal Dystrophies, Hereditary/metabolism , Symporters/metabolism , Vesicular Transport Proteins/deficiency , Animals , Blotting, Western , Cell Proliferation/physiology , Cornea/pathology , Corneal Dystrophies, Hereditary/pathology , Disease Models, Animal , Epithelial Cells/metabolism , Epithelial Cells/pathology , Fluorescent Antibody Technique , HEK293 Cells , Humans , Mice, Transgenic , Microscopy, Confocal , Retina/metabolism , Retina/pathology , Transfection , Vesicular Transport Proteins/genetics
19.
EBioMedicine ; 9: 45-60, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27333042

ABSTRACT

Parathyroid hormone (PTH) plays critical, but distinct, roles in bone remodeling, including bone formation (anabolic response) and resorption (catabolic response). Although its signaling and function have been extensively investigated, it just began to be understood how distinct functions are induced by PTH activating a common receptor, the PTH type 1 receptor (PTH1R), and how PTH1R signaling is terminated. Here, we provide evidence for vacuolar protein sorting 35 (VPS35), a major component of retromer, in regulating PTH1R trafficking, turning off PTH signaling, and promoting its catabolic function. VPS35 is expressed in osteoblast (OB)-lineage cells. VPS35-deficiency in OBs impaired PTH(1-34)-promoted PTH1R translocation to the trans-Golgi network, enhanced PTH(1-34)-driven signaling, and reduced PTH(1-34)'s catabolic response in culture and in mice. Further mechanical studies revealed that VPS35 interacts with not only PTH1R, but also protein phosphatase 1 regulatory subunit 14C (PPP1R14C), an inhibitory subunit of PP1 phosphatase. PPP1R14C also interacts with PTH1R, which is necessary for the increased endosomal PTH1R signaling and decreased PTH(1-34)'s catabolic response in VPS35-deficient OB-lineage cells. Taken together, these results suggest that VPS35 deregulates PTH1R-signaling likely by its interaction with PTH1R and PPP1R14C. This event is critical for the control of PTH(1-34)-signaling dynamics, which may underlie PTH-induced catabolic response and adequate bone remodeling.


Subject(s)
Osteoblasts/metabolism , Protein Phosphatase 1/metabolism , Receptor, Parathyroid Hormone, Type 1/metabolism , Signal Transduction , Vesicular Transport Proteins/metabolism , Animals , Biomarkers , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Bone Remodeling/genetics , Bone and Bones/metabolism , Cell Line , Coculture Techniques , Endosomes/metabolism , Golgi Apparatus/metabolism , Humans , Intracellular Signaling Peptides and Proteins , Mice , Mice, Knockout , Models, Biological , Parathyroid Hormone/pharmacology , Protein Binding , Protein Transport , Signal Transduction/drug effects , Vesicular Transport Proteins/genetics
20.
J Neurosci ; 36(21): 5833-49, 2016 05 25.
Article in English | MEDLINE | ID: mdl-27225772

ABSTRACT

UNLABELLED: Neogenin, a DCC (deleted in colorectal cancer) family receptor, is highly expressed in neural stem cells (NSCs). However, its function in NSCs remains to be explored. Here we provide in vitro and in vivo evidence for neogenin's function in NSCs to promote neocortical astrogliogenesis, but not self-renewal or neural differentiation. Mechanistically, neogenin in neocortical NSCs was required for BMP2 activation of YAP (yes associated protein). The active/nuclear YAP stabilized phospho-Smad1/5/8 and was necessary for BMP2 induction of astrocytic differentiation. Deletion of yap in mouse neocortical NSCs caused a similar deficit in neocortical astrogliogenesis as that in neogenin mutant mice. Expression of YAP in neogenin mutant NSCs diminished the astrocytic differentiation deficit in response to BMP2. Together, these results reveal an unrecognized function of neogenin in increasing neocortical astrogliogenesis, and identify a pathway of BMP2-neogenin-YAP-Smad1 for astrocytic differentiation in developing mouse neocortex. SIGNIFICANCE STATEMENT: Astrocytes, a major type of glial cells in the brain, play important roles in modulating synaptic transmission and information processing, and maintaining CNS homeostasis. The abnormal astrocytic differentiation during development contributes to dysfunctions of synaptic plasticity and neuropsychological disorders. Here we provide evidence for neogenin's function in regulation of the neocortical astrocyte differentiation during mouse brain development. We also provide evidence for the necessity of neogenin in BMP2/Smad1-induced astrocyte differentiation through YAP. Thus, our findings identify an unrecognized function of neogenin in mouse neocortical astrocyte differentiation, and suggest a signaling pathway, BMP2-neogenin-YAP-Smad1, underlying astrogliogenesis in developing mouse neocortex.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Astrocytes/physiology , Bone Morphogenetic Protein 2/metabolism , Membrane Proteins/metabolism , Neocortex/physiology , Phosphoproteins/metabolism , Smad1 Protein/metabolism , Animals , Astrocytes/cytology , Cell Cycle Proteins , Cell Differentiation/physiology , Cells, Cultured , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neocortex/cytology , Neurogenesis/physiology , Up-Regulation/physiology , YAP-Signaling Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...