Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
J Med Chem ; 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39321030

ABSTRACT

Fibroblast activation protein (FAP) is specifically expressed on cancer-associated fibroblasts in over 90% of tumors and is considered a promising target for cancer theranostics. Here, we developed a novel tracer, DOTA-FAPT, and labeled it with gallium-68 and lutetium-177 as a theranostic pair. [68Ga]Ga/[177Lu]Lu-FAPT exhibited high stability and hydrophilicity, as well as strong affinity to the FAP target. Micro-PET/CT imaging revealed that [68Ga]Ga-FAPT exhibited significantly increased uptake in tumors and extended retention in A549-FAP and U87MG tumor xenografts as compared to [68Ga]Ga-FAPI-04, demonstrating favorable pharmacokinetic characteristics in vivo. Therapeutic studies showed that [177Lu]Lu-FAPT had higher tumor accumulation compared to [177Lu]Lu-FAPI-04, leading to stronger tumor growth inhibition. The first-in-human evaluation also revealed that [68Ga]Ga-FAPT has good in vivo distribution and superior diagnostic efficacy on primary and lymph node metastases in a patient with lung cancer. Our encouraging results suggest that 68Ga/177Lu-labeled DOTA-FAPT is a theranostic pair with broad application prospect.

2.
Kidney Int ; 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39098582

ABSTRACT

A major challenge in prevention and early treatment of organ fibrosis is the lack of valuable tools to assess the evolving profibrotic maladaptive repair after injury in vivo in a non-invasive way. Here, using acute kidney injury (AKI) as an example, we tested the utility of fibroblast activation protein (FAP) imaging for dynamic assessment of maladaptive repair after injury. The temporospatial pattern of kidney FAP expression after injury was first characterized. Single-cell RNA sequencing and immunostaining analysis of patient biopsies were combined to show that FAP was specifically upregulated in kidney fibroblasts after AKI and was associated with fibroblast activation and chronic kidney disease (CKD) progression. This was corroborated in AKI mouse models, where a sustained and exaggerated kidney FAP upregulation was coupled to persistent fibroblast activation and a fibrotic outcome, linking kidney FAP level to post-insult maladaptive repair. Furthermore, using positron emission tomography (PET)/CT scanning with FAP-inhibitor tracers ([18F]FAPI-42, [18F]FAPT) targeting FAP, we demonstrated the feasibility of non-invasively tracking of maladaptive repair evolution toward kidney fibrosis. Importantly, a sustained increase in kidney [18F]FAPT (less hepatobiliary metabolized than [18F]FAPI-42) uptake reflected persistent kidney upregulation of FAP and characterized maladaptive repair after AKI. Kidney [18F]FAPT uptake at hour 2-day 7 correlated with kidney fibrosis 14 days after AKI. Similar changes in [18F]FAPI-42 PET/CT imaging were observed in patients with AKI and CKD progression. Thus, persistent kidney FAP upregulation after AKI was associated with maladaptive repair and a fibrotic outcome. Hence, FAP-specific PET/CT imaging enables dynamic visualization of maladaptive repair after AKI and prediction of kidney fibrosis within a clinically actionable window.

3.
J Labelled Comp Radiopharm ; 67(10): 334-340, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39041590

ABSTRACT

Recently, the folate receptor (FR) has become an exciting target for the diagnosis of FR-positive malignancies. Nevertheless, suboptimal in vivo pharmacokinetic properties, particularly high uptake in the renal and hepatobiliary systems, are important limiting factors for the clinical translation of most FR-based radiotracers. In this study, we developed a novel 18F-labeled FR-targeted positron emission tomography (PET) tracer [18F]AlF-NOTA-Asp2-PEG2-Folate modified with a hydrophilic linker (-Asp2-PEG2) to optimize its pharmacokinetic properties and conducted a comprehensive preclinical assessment. The [18F]AlF-NOTA-Asp2-PEG2-Folate was manually synthesized within 30 min with a non-decay-corrected radiochemical yield of 16.3 ± 2.0% (n = 5). Among KB cells, [18F]AlF-NOTA-Asp2-PEG2-Folate exhibited high specificity and affinity for FR. PET/CT imaging and biodistribution experiments in KB tumor-bearing mice showed decent tumor uptake (1.7 ± 0.3% ID/g) and significantly decreased uptake in kidneys and liver (22.2 ± 2.1 and 0.3 ± 0.1% ID/g at 60 min p.i., respectively) of [18F]AlF-NOTA-Asp2-PEG2-Folate, compared to the known tracer [18F]AlF-NOTA-Folate (78.6 ± 5.1 and 5.3 ± 0.5 % ID/g at 90 min p.i., respectively). The favorable properties of [18F]AlF-NOTA-Asp2-PEG2-Folate, including its efficient synthesis, decent tumor uptake, relatively low renal uptake, and rapid clearance from most normal organs, portray it as a promising PET tracer for FR-positive tumors.


Subject(s)
Fluorine Radioisotopes , Folic Acid , Positron-Emission Tomography , Animals , Positron-Emission Tomography/methods , Mice , Humans , Tissue Distribution , Fluorine Radioisotopes/chemistry , Folic Acid/chemistry , Folic Acid/pharmacokinetics , KB Cells , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/chemistry , Chemistry Techniques, Synthetic , Folate Receptors, GPI-Anchored/metabolism , Heterocyclic Compounds, 1-Ring
4.
Bioorg Chem ; 151: 107660, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39079391

ABSTRACT

PD-L1 is expressed in many tumors but rarely in normal tissues, therefore, it can be a target of PET imaging. In this work, we developed new peptide-based PET probes [18F]AlF-PAI-PDL1p and [68Ga]Ga-PAI-PDL1p with yields of 20-25 % and 40-55 %, respectively. [18F]AlF-PAI-PDL1p and [68Ga]Ga-PAI-PDL1p were synthesized within 30 min with high molar activities. [18F]AlF-PAI-PDL1p and [68Ga]Ga-PAI-PDL1p showed good stability in vivo and in vitro. In vitro cell studies showed [18F]AlF-PAI-PDL1p and [68Ga]Ga-PAI-PDL1p target PD-L1 specifically, with high uptake of 61.52 ± 4.39 and 19.29 ± 2.17 %ID/1 million cells in B16F10 cells at 60 min, respectively. Biodistribution results showed that both [18F]AlF-PAI-PDL1p and [68Ga]Ga-PAI-PDL1p had lower liver accumulation. In vivo PET imaging results showed that [18F]AlF-PAI-PDL1p had a high tumor uptake of 4.23 ± 0.81 %ID/g at 2 h and increased uptake of 6.60 ± 1.01 %ID/g at 12 h. [68Ga]Ga-PAI-PDL1p also showed high tumor uptake of 2.30 ± 0.20 %ID/g at 2 h and slightly increased uptake of 3.80 ± 0.26 %ID/g at 6 h. In conclusion, [18F]AlF-PAI-PDL1p and [68Ga]Ga-PAI-PDL1 seemed to be potential tracers for PET imaging of PD-L1 expression.


Subject(s)
B7-H1 Antigen , Fluorine Radioisotopes , Gallium Radioisotopes , Positron-Emission Tomography , Animals , B7-H1 Antigen/metabolism , Mice , Fluorine Radioisotopes/chemistry , Gallium Radioisotopes/chemistry , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/chemical synthesis , Humans , Tissue Distribution , Molecular Structure , Mice, Inbred C57BL , Cell Line, Tumor
5.
Transl Stroke Res ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940873

ABSTRACT

The development of fibrosis after injury to the brain or spinal cord limits the regeneration of the central nervous system in adult mammals. However, the extent of fibrosis in the injured brain has not been systematically investigated in mammals in vivo. This study aimed to assess whether [18F]AlF-FAPI-42-based cerebral positron emission tomography (PET) can be utilized to assess the extent of fibrosis in ischemic regions of the brain in vivo. Sprague-Dawley rats underwent permanent occlusion of the right middle cerebral artery (MCAO). On days 3, 7, 14, and 21 after MCAO, the uptake of [18F]AlF-FAPI-42 in the ischemic region of the brain in the MCAO groups surpassed that in the control group (day 0). The specific expression of fibroblast activation protein-α (FAP) in ischemic regions of the brain was also confirmed in immunohistofluorescence experiments in vitro. [18F]AlF-FAPI-42 intensity correlated with the density of collagen deposition in the ischemic hemisphere (p < 0.001). [18F]AlF-FAPI-42 PET/CT imaging demonstrated a specific uptake of radioactivity in the infarcted area in an ischemic stroke patient. PET imaging by using [18F]AlF-FAPI-42 offers a promising non-invasive method for monitoring the progression of cerebral fibrosis caused by ischemic stroke and may facilitate the clinical management of stroke patients. Trial registration: chictr.org.cn ChiCTR2200059004. Registered April 22, 2022.

6.
Cancer Imaging ; 24(1): 58, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715096

ABSTRACT

BACKGROUND: In the present study, we investigated the value of 18F-fibroblast-activation protein inhibitor (FAPI) positron emission tomography/computed tomography (18F-FAPI-42 PET/CT) to preoperative evaluations of appendiceal neoplasms and management for patients. METHODS: This single-center retrospective clinical study, including 16 untreated and 6 treated patients, was performed from January 2022 to May 2023 at Southern Medical University Nanfang Hospital. Histopathologic examination and imaging follow-up served as the reference standard. 18F-FAPI-42 PET/CT was compared to 18F-fluorodeoxyglucose (18F-FDG) PET/CT and contrast-enhanced CT (CE-CT) in terms of maximal standardized uptake value (SUVmax), diagnostic efficacy and impact on treatment decisions. RESULTS: The accurate detection of primary tumors and peritoneal metastases were improved from 28.6% (4/14) and 50% (8/16) for CE-CT, and 43.8% (7/16) and 85.0% (17/20) for 18F-FDG PET/CT, to 87.5% (14/16) and 100% (20/20) for 18F-FAPI-42 PET/CT. Compared to 18F-FDG PET/CT, 18F-FAPI-42 PET/CT detected more regions infiltrated by peritoneal metastases (108 vs. 43), thus produced a higher peritoneal cancer index (PCI) score (median PCI: 12 vs. 5, P < 0.01). 18F-FAPI-42 PET/CT changed the intended treatment plans in 35.7% (5/14) of patients compared to CE-CT and 25% (4/16) of patients compared to 18F-FDG PET/CT but did not improve the management of patients with recurrent tumors. CONCLUSIONS: The present study revealed that 18F-FAPI-42 PET/CT can supplement CE-CT and 18F-FDG PET/CT to provide a more accurate detection of appendiceal neoplasms and improved treatment decision making for patients.


Subject(s)
Appendiceal Neoplasms , Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography , Radiopharmaceuticals , Humans , Positron Emission Tomography Computed Tomography/methods , Female , Male , Retrospective Studies , Middle Aged , Appendiceal Neoplasms/diagnostic imaging , Appendiceal Neoplasms/pathology , Appendiceal Neoplasms/therapy , Aged , Adult , Peritoneal Neoplasms/diagnostic imaging , Peritoneal Neoplasms/therapy , Peritoneal Neoplasms/secondary , Tomography, X-Ray Computed/methods
7.
Bioorg Chem ; 147: 107352, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38640719

ABSTRACT

Glypican-3 (GPC3) is markedly overexpressed in hepatocellular carcinoma (HCC) and not expressed in normal liver tissues. In this study, a novel peptide PET imaging agent ([18F]AlF-NOTA-IPB-GPC3P) was developed to target GPC3 expressed in tumors. The overall radiochemical yield of [18F]AlF-NOTA-IPB-GPC3P was 10-15 %, and its lipophilicity, expressed as the logD value at a pH of 7.4, was -1.18 ± 0.06 (n = 3). Compared to the previously reported tracer [18F]AlF-GP2633, [18F]AlF-NOTA-IPB-GPC3P exhibited higher cellular uptake (15.13 vs 5.96) and internalized rate (80.63 % vs 35.93 %) in Huh7 cells at 120 min. Micro-PET/CT and biodistribution studies further demonstrated that [18F]AlF-NOTA-IPB-GPC3P exhibited significantly increased tumor uptake and prolonged tumor residence in Huh7 tumors compared to [18F]AlF-GP2633 (4.66 ± 0.22 % ID/g vs 0.72 ± 0.09 % ID/g at 60 min, p < 0.001; 5.05 ± 0.23 % ID/g vs 0.35 ± 0.08 % ID/g at 120 min, p < 0.001, respectively). Furthermore, the tumor-to-organ ratios of [18F]AlF-NOTA-IPB-GPC3P surpassed those of [18F]AlF-GP2633. Our results support the utilization of [18F]AlF-NOTA-IPB-GPC3P as a PET imaging agent targeting the GPC3 receptor for tumor detection.


Subject(s)
Fluorine Radioisotopes , Glypicans , Positron-Emission Tomography , Animals , Humans , Mice , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Fluorine Radioisotopes/chemistry , Glypicans/metabolism , Heterocyclic Compounds, 1-Ring , Liver Neoplasms/diagnostic imaging , Mice, Nude , Molecular Structure , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/chemistry , Structure-Activity Relationship , Tissue Distribution
9.
Mol Pharm ; 21(5): 2425-2434, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38554143

ABSTRACT

GRP78, a member of the HSP70 superfamily, is an endoplasmic reticulum chaperone protein overexpressed in various cancers, making it a promising target for cancer imaging and therapy. Positron emission tomography (PET) imaging offers unique advantages in real time, noninvasive tumor imaging, rendering it a suitable tool for targeting GRP78 in tumor imaging to guide targeted therapy. Several studies have reported successful tumor imaging using PET probes targeting GRP78. However, existing PET probes face challenges such as low tumor uptake, inadequate in vivo distribution, and high abdominal background signal. Therefore, this study introduces a novel peptide PET probe, [18F]AlF-NOTA-c-DVAP, for targeted tumor imaging of GRP78. [18F]AlF-NOTA-c-DVAP was radiolabeled with fluoride-18 using the aluminum-[18F]fluoride ([18F]AlF) method. The study assessed the partition coefficients, stability in vitro, and metabolic stability of [18F]AlF-NOTA-c-DVAP. Micro-PET imaging, pharmacokinetic analysis, and biodistribution studies were carried out in tumor-bearing mice to evaluate the probe's performance. Docking studies and pharmacokinetic analyses of [18F]AlF-NOTA-c-DVAP were also performed. Immunohistochemical and immunofluorescence analyses were conducted to confirm GRP78 expression in tumor tissues. The probe's binding affinity to GRP78 was analyzed by molecular docking simulation. [18F]AlF-NOTA-c-DVAP was radiolabeled in just 25 min with a high yield of 51 ± 16%, a radiochemical purity of 99%, and molar activity within the range of 20-50 GBq/µmol. [18F]AlF-NOTA-c-DVAP demonstrated high stability in vitro and in vivo, with a logD value of -3.41 ± 0.03. Dynamic PET imaging of [18F]AlF-NOTA-c-DVAP in tumors showed rapid uptake and sustained retention, with minimal background uptake. Biodistribution studies revealed rapid blood clearance and excretion through the kidneys following a single-compartment reversible metabolic model. In PET imaging, the T/M ratios for A549 tumors (high GRP78 expression), MDA-MB-231 tumors (medium expression), and HepG2 tumors (low expression) at 60 min postintravenous injection were 10.48 ± 1.39, 6.25 ± 0.47, and 3.15 ± 1.15% ID/g, respectively, indicating a positive correlation with GRP78 expression. This study demonstrates the feasibility of using [18F]AlF-NOTA-c-DVAP as a PET tracer for imaging GRP78 in tumors. The probe shows promising results in terms of stability, specificity, and tumor targeting. Further research may explore the clinical utility and potential therapeutic applications of this PET tracer for cancer diagnosis.


Subject(s)
Endoplasmic Reticulum Chaperone BiP , Fluorine Radioisotopes , Heat-Shock Proteins , Positron-Emission Tomography , Radiopharmaceuticals , Animals , Mice , Humans , Positron-Emission Tomography/methods , Fluorine Radioisotopes/pharmacokinetics , Tissue Distribution , Heat-Shock Proteins/metabolism , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/administration & dosage , Cell Line, Tumor , Mice, Nude , Female , Mice, Inbred BALB C , Heterocyclic Compounds, 1-Ring/chemistry , Heterocyclic Compounds, 1-Ring/pharmacokinetics , Neoplasms/diagnostic imaging , Neoplasms/metabolism , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacokinetics
10.
Bioorg Chem ; 146: 107275, 2024 May.
Article in English | MEDLINE | ID: mdl-38493637

ABSTRACT

Early diagnosis and precise surgical intervention are crucial for cancer patients. We aimed to develop a novel positron emission tomography (PET)/fluorescence dual-modality probe for preoperative diagnosis, intraoperative guidance, and postoperative monitoring of fibroblast activation protein (FAP)-positive tumors. FAPI-FAM was synthesized and labeled with gallium-68. [68Ga]Ga-FAPI-FAM showed favorable in vivo and in vitro characteristics, specific binding affinity, and excellent tumor accumulation in FAP-positive cells and mice xenografts. Excellent tumor-to-background contrast was found owing to high tumor uptake, prolonged retention, and rapid renal clearance of [68Ga]Ga-FAPI-FAM. Moreover, a specific fluorescence signal was detected in FAP-positive tumors during ex vivo fluorescence imaging, demonstrating the feasibility of whole-body tumor detection and intraoperative tumor delineation.


Subject(s)
Neoplasms , Quinolines , Humans , Mice , Animals , Gallium Radioisotopes , Fluorescence , Positron-Emission Tomography/methods , Neoplasms/metabolism , Fibroblasts/metabolism
11.
Bioorg Chem ; 145: 107193, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38442611

ABSTRACT

Immunotherapy has brought great benefits to cancer patients, but only some patients benefit from it. Noninvasive, real-time and dynamic monitoring of the effectiveness of immunotherapy through PET imaging may provide assistance for the treatment plan of immunotherapy. In this study, we designed and synthesized a new targeted PD-L1 peptide NOTA-PEG2-Asp2-PDL1P, which was labeled with nuclide 18F to obtain a new imaging agent [18F]AlF-NOTA-PEG2-Asp2-PDL1P. The total radiochemical yield of [18F]AlF-NOTA-PEG2-Asp2-PDL1P was 13.7 % (Uncorrected radiochemical yield, n > 5). [18F]AlF-NOTA-PEG2-Asp2-PDL1P achieved high radiochemical purity (>95 %) with a molar activity more than 51.2 GBq/µmol. [18F]AlF-NOTA-PEG2-Asp2-PDL1P exhibited good hydrophilicity and had good stability both in vivo and in vitro, it can specifically targets B16F10 tumor with PD-L1 expression, and had a relatively high retention in tumor, a relatively fast clearance in vivo and a higher tumor-to-non-target ratio, all of which could make [18F]AlF-NOTA-PEG2-Asp2-PDL1P a potential tracer for PD-L1 prediction before clinical immunotherapy.


Subject(s)
Heterocyclic Compounds, 1-Ring , Heterocyclic Compounds , Neoplasms , Humans , Heterocyclic Compounds/chemistry , Molecular Probes , B7-H1 Antigen/metabolism , Fluorine Radioisotopes/chemistry , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemistry , Cell Line, Tumor
12.
Bioconjug Chem ; 34(11): 2133-2143, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37874952

ABSTRACT

Molecular imaging and targeted radiotherapy with radiolabeled fibroblast activation protein inhibitor (FAPI) targeting peptide probes hold great potential for enhancing the clinical management of patients with FAP-expressing cancers. However, the high cost of PET probes has prompted us to search for new FAP-targeting single-photon imaging agents. In this study, HYNIC-Glc-FAPT is synthesized and radiolabeled with technetium-99m using tricine/EDDA or dimer tricine as coligands to produce [99mTc]Tc-tricine/EDDA-HYNIC-Glc-FAPT and [99mTc]Tc-tricine(2)-HYNIC-Glc-FAPT. Both [99mTc]Tc-tricine/EDDA-HYNIC-Glc-FAPT and [99mTc]Tc-tricine(2)-HYNIC-Glc-FAPT were effectively synthesized with an excellent radiochemistry yield (both >97%, n = 6) in a single-step technique, and their stability in PBS and human serum was satisfactory. Compared to [99mTc]Tc-tricine(2)-HYNIC-Glc-FAPT, [99mTc]Tc-tricine/EDDA-HYNIC-Glc-FAPT exhibited a more hydrophilic nature with a log P of -3.53 ± 0.12. In vitro cellular uptake and blocking assays, internalization, efflux experiments, and affinity experiments all suggested a mechanism with high FAP-specificity and affinity. SPECT imaging and biodistribution of [99mTc]Tc-tricine/EDDA-HYNIC-Glc-FAPT demonstrated sustained high tumor uptake in BALB/c nude mice bearing U87MG tumors for 6 h. It demonstrated a long-range retention characteristic and more rapid clearance ability from nontarget organs. Collectively, we successfully synthesized [99mTc]Tc-tricine/EDDA-HYNIC-Glc-FAPT and [99mTc]Tc-tricine(2)-HYNIC-Glc-FAPT, and the excellent targeting properties of [99mTc]Tc-tricine/EDDA-HYNIC-Glc-FAPT suggest a potential diagnostic value in future clinical studies for advanced-stage FAP-expressing malignancies, especially in prognostic evaluation of tumors for it low price and convenient source.


Subject(s)
Radiopharmaceuticals , Technetium , Mice , Animals , Humans , Mice, Nude , Tissue Distribution , Cell Line, Tumor , Radiopharmaceuticals/chemistry , Organotechnetium Compounds/chemistry
13.
Nucl Med Commun ; 44(11): 1011-1019, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37661771

ABSTRACT

OBJECTIVE: In this study, the potential advantage of FAPI over 18 F-labelled deoxyglucose ( 18 F-FDG) in evaluation of the initial staging colorectal cancer (CRC) was investigated. MATERIALS AND METHODS: Thirty-two patients with histopathologically confirmed primary CRC were included in our study. They all underwent both 18 F-FDG and FAPI PET/CT. Lesion detectability and tracer uptakes, mainly quantified by maximum standardized uptake value (SUVmax) and target-to-background ratio (TBR), were compared for paired lesions between both modalities using the Wilcoxon signed-rank test and paired t-test. RESULTS: Thirty-five CRC lesions in 32 patients were diagnosed. The sensitivity of FAPI PET/CT in diagnosis of the CRC lesions was 100% while 93.8% of 18 F-FDG PET/CT. FAPI and 18 F-FDG had a similar uptake in CRC lesion (mean SUVmax: 14.3 ±â€…8.6 vs. 15.4 ±â€…9.8, P  = 0.604), but lesions contained mucus and/or signet-ring cell carcinoma seemed to have a trend of higher FAPI uptake although there was no statistical difference (mean SUVmax: 12.7 ±â€…5.6 vs. 8.5 ±â€…4.1, P  = 0.152) and higher TBR (13.4 ±â€…6.2 vs. 4.9 ±â€…2.2, P  = 0.004) than those of 18 F-FDG. For regional lymph node metastases, both FAPI and FDG PET/CTs showed high sensitivity (7/8 vs. 7/8), specificity (7/8 vs. 6/8) and accuracy (14/16 vs. 13/16) (all P  > 0.05). For distant metastasis, FAPI PET/CT depicted more positive lesions in distant lymph node (46 vs. 26), liver (13 vs. 7) and peritoneum (107 vs. 45) than 18 F-FDG PET/CT. FAPI PET/CT also had a higher peritoneal cancer index score (median 11 vs 4; P  < 0.001) than 18 F-FDG PET/CT in evaluation of peritoneal metastases. CONCLUSION: FAPI PET/CT showed high sensitivity in detection of primary CRC and superiority to 18 F-FDG PET/CT in detection of metastases to distant lymph node, liver and peritoneum.


Subject(s)
Colorectal Neoplasms , Quinolines , Humans , Positron Emission Tomography Computed Tomography , Fluorodeoxyglucose F18 , Positron-Emission Tomography , Colorectal Neoplasms/diagnostic imaging , Fibroblasts , Gallium Radioisotopes
14.
Bioorg Chem ; 141: 106878, 2023 12.
Article in English | MEDLINE | ID: mdl-37774434

ABSTRACT

Fibroblast activation protein (FAP) is a promising molecular target for imaging in various types of cancers. Several 18F-labeled FAP inhibitor (FAPI) tracers have been evaluated in clinical study. However, these tracers display high physiological uptake in gallbladder and bile duct system. To overcome the limitation, we herein designed a novel radiotracer named 18F-FAPTG. 18F-FAPTG was produced with a non-decay-corrected radiochemical yield of 24.0 ± 6.0% and 22.0 ± 7.0% for manual and automatic synthesis, respectively. 18F-FAPTG exhibited high hydrophilicity and stability in vitro. The studies of cellular uptake, internalization, efflux properties and competitive binding to FAP of 18F-FAPTG indicated that the tracer showed high specificity, rapid internalization and low cellular efflux in FAP-positive cells. Biodistribution studies and microPET in mice bearing FAP-positive xenografts demonstrated extremely low uptake in the majority of other organs and main excretion of 18F-FAPTG through the urinary system. Furthermore, compared to 18F-FAPI-42, 18F-FAPTG showed significantly lower uptake in gallbladder, higher tumor uptake and longer tumor retention. In the pilot clinical study, 18F-FAPTG PET/CT demonstrated favorable tumor-to-background ratios in most organs and clearly displayed the malignant lesions. Our findings indicated that 18F-FAPTG had an advantage over 18F-FAPI-42 in PET imaging for cancers located in gallbladder the bile duct system. Thus, 18F-FAPTG could be an alternative to the currently available FAPI tracers.


Subject(s)
Neoplasms , Positron Emission Tomography Computed Tomography , Humans , Mice , Animals , Positron Emission Tomography Computed Tomography/methods , Tissue Distribution , Positron-Emission Tomography , Neoplasms/metabolism , Fibroblasts/metabolism
16.
Eur J Nucl Med Mol Imaging ; 50(11): 3363-3374, 2023 09.
Article in English | MEDLINE | ID: mdl-37266596

ABSTRACT

PURPOSE: Research on fibroblast activating protein (FAP)-targeting inhibitor (FAPI) has become an important focus for cancer imaging and radiotherapy. Quinoline-based tracers [68 Ga]FAPI-04 and [18F]FAPI-42 have been widely used for positron emission tomography (PET) imaging of most tumors. However, there exist some limitations of these tracers with high uptake in biliary duct system and unstable uptake in pancreas, unsuitable for abdominal tumors PET imaging. Here we developed a [18F]-labeled glycopeptide-containing FAPI tracer (named [18F]FAPT) for PET imaging of FAP in cancers. METHODS: [18F]FAPT was synthesized manually and automatically. The competitive binding to FAP, cellular internalization, and efflux characteristics were examined in vitro using A549-FAP cells. Dynamic MicroPET and biodistribution studies of [18F]FAPT were then conducted in A549-FAP and U87MG xenograft tumor mouse models compared with [18F]FAPI-42. Five healthy volunteers and three patients with cancer underwent [18F]FAPT PET/CT. RESULTS: Preclinical and clinical studies showed specific binding of [18F]FAPT to FAP and favorable pharmacokinetic properties with better hydrophilicity, lower uptake in biliary duct system, higher tumor uptake and longer tumor retention compared with [18F]FAPI-42. The biodistribution of [18F]FAPT in healthy volunteers and patients with cancer displayed low uptake in most normal tissues except for pancreas, thyroid and salivary gland, which could contribute to high tumor-to-background ratios in most cancers. CONCLUSION: [18F]FAPT is better PET tracer than [18F]FAPI-42 for imaging of biliary duct system cancer, potentially providing a tool to examine FAP expression in most cancers with high tumor-to-background ratios.


Subject(s)
Abdominal Neoplasms , Quinolines , Humans , Animals , Mice , Positron Emission Tomography Computed Tomography , Tissue Distribution , Positron-Emission Tomography , Fibroblasts , Disease Models, Animal , Gallium Radioisotopes
17.
Front Cell Infect Microbiol ; 13: 1182480, 2023.
Article in English | MEDLINE | ID: mdl-37293208

ABSTRACT

Background: Early and accurate diagnosis of infection-induced osteomyelitis, which often involves increased PD-L1 expression, is crucial for better treatment outcomes. Radiolabeled anti-PD-L1 nuclear imaging allows for sensitive and non-invasive whole-body assessments of PD-L1 expression. This study aimed to compare the efficacy of 18F-FDG and an 18F-labeled PD-L1-binding peptide probe (18F-PD-L1P) in PET imaging of implant-associated Staphylococcus aureus osteomyelitis (IAOM). Methods: In this study, we synthesized an anti-PD-L1 probe and compared its efficacy with 18F-FDG and 18F-PD-L1P in PET imaging of implant-associated Staphylococcus aureus osteomyelitis (IAOM). The %ID/g ratios (i.e., radioactivity ratios between the infected and non-infected sides) of both probes were evaluated for sensitivity and accuracy in post-infected 7-day tibias and post-infected 21 days, and the intensity of 18F-PD-L1P uptake was compared with pathological changes measured by PD-L1 immunohistochemistry (IHC). Results: Compared with 18F-FDG, 18F-PDL1P demonstrated higher %ID/g ratios for both post-infected 7-day tibias (P=0.001) and post-infected 21 days (P=0.028). The intensity of 18F-PD-L1P uptake reflected the pathological changes of osteomyelitic bones. In comparison to 18F-FDG, 18F-PDL1P provides earlier and more sensitive detection of osteomyelitis caused by S. aureus. Conclusion: Our findings suggest that the 18F-PDL1P probe is a promising tool for the early and accurate detection of osteomyelitis caused by S. aureus.


Subject(s)
Osteomyelitis , Staphylococcal Infections , Humans , Positron Emission Tomography Computed Tomography , Fluorodeoxyglucose F18 , Staphylococcus aureus , Positron-Emission Tomography/methods , Osteomyelitis/diagnostic imaging , Staphylococcal Infections/diagnostic imaging , Staphylococcal Infections/metabolism
18.
Mol Imaging Biol ; 25(4): 671-680, 2023 08.
Article in English | MEDLINE | ID: mdl-37020127

ABSTRACT

PURPOSE: Compare the value of imaging using positron 18F-labeled fibroblast activation protein inhibitor-42 (18F-FAPI-42) and 18F-labeled deoxyglucose (18F-FDG) for assessment of AKI. PROCEDURES: This study analyzed cancer patients who received 18F-FAPI-42 and 18F-FDG PET/CT imaging. Eight patients had AKI with bilateral ureteral obstruction (BUO), eight had BUO (CKD1-2) with no acute kidney disease (AKD), and eight had no ureteral obstruction (UO) with normal renal function. The average standardized uptake value (SUVave) of the renal parenchyma (RP-SUVave), the blood pool SUVave (B- SUVave), SUVave in the highest region of the renal collective system (RCS-SUVave), and the highest serum creatinine level (top SCr) were recorded. RESULTS: The 18F-FAPI-42 and 18F-FDG results showed that radiotracer of renal parenchyma was more concentrated in the AKI group than in the other two groups, whereas the RP-SUVave from 18F-FAPI-42 was higher than that from 18F-FDG in the AKI group (all P < 0.05). 18F-FAPI-42 imaging in the AKI group showed uptake by the renal parenchyma with a diffuse increase, but very little radiotracer in the renal collecting system, similar to a "super kidney scan." The renal parenchyma also had an increase of SUVave, with accumulation of radiotracer in the renal collecting system. AKI was more severe when a patient had a "super kidney scan" in both kidneys (P < 0.05). The B-SUVave level was higher in the AKI group than in the other two groups in 18F-FAPI-42 (both P < 0.05). CONCLUSIONS: 18F-FAPI-42 imaging had higher RP-SUVave than 18F-FDG imaging in cancer patients who had BUO with AKI. An increased renal parenchyma uptake in both kidneys and low radiotracer distribution in the collecting system suggest more severe AKI.


Subject(s)
Acute Kidney Injury , Neoplasms , Quinolines , Humans , Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography , Acute Kidney Injury/diagnostic imaging , Positron-Emission Tomography , Kidney/diagnostic imaging , Radiopharmaceuticals , Gallium Radioisotopes , Neoplasms/complications , Neoplasms/diagnostic imaging
20.
Eur Radiol ; 32(9): 6281-6290, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35380229

ABSTRACT

OBJECTIVE: This study aimed to compare [68Ga]Ga-FAPI-04/[18F]FAPI-42 PET/CT with [18F]FDG PET/CT in the evaluation of initial gastric cancer. METHODS: We retrospectively compared [68Ga]Ga-FAPI-04/[18F]FAPI-42 PET/CT with [18F]FDG PET/CT in patients with initial gastric cancer from September 2020 to March 2021. Lesion detectability and the uptake of lesions quantified by the maximum standardized uptake value (SUVmax) and target-to-background ratio (TBR) were compared between the two modalities using the Wilcoxon signed-rank test, Mann-Whitney U test, and McNemar's chi-square test. RESULTS: A total of 61 patients (37 males, aged 23-81 years) were included, of which 22 underwent radical gastrectomy. For primary lesions, higher uptake of [68Ga]Ga-FAPI-04/[18F]FAPI-42 was observed compared to [18F]FDG (median SUVmax, 14.60 vs 4.35, p < 0.001), resulting in higher positive detection using [68Ga]Ga-FAPI-04/[18F]FAPI-42 PET/CT than [18F]FDG PET/CT (95.1% vs 73.8%, p < 0.001), particularly for tumors with signet-ring cell carcinoma (SRCC) (96.4% vs 57.1%, p < 0.001). [68Ga]Ga-FAPI-04/[18F]FAPI-42 PET/CT detected more positive lymph nodes than [18F]FDG PET/CT (637 vs 407). However, both modalities underestimated N staging compared to pathological N staging. [68Ga]Ga-FAPI-04/[18F]FAPI-42 PET/CT showed a higher sensitivity (92.3% vs 53.8%, p = 0.002) and peritoneal cancer index score (18 vs 3, p < 0.001) in peritoneum metastasis and other suspect metastases compared to [18F]FDG PET/CT. CONCLUSION: Our findings indicate that [68Ga]Ga-FAPI-04/[18F]FAPI-42 PET/CT outperformed [18F]FDG PET/CT in the evaluation of primary tumors with SRCC and peritoneum metastasis in initial gastric cancer. However, no clinically useful improvement was seen in N staging. KEY POINTS: • The uptake of [68Ga]Ga-FAPI-04/[18F]FAPI-42 in primary tumor and metastasis was intensely higher than that of [18F]FDG (p < 0.001) in 61 patients with initial gastric cancer. • [68Ga]Ga-FAPI-04/[18F]FAPI-42 PET/CT had a higher sensitivity detection in primary tumors (95.1% vs 73.8%, p < 0.001) and peritoneal metastases (92.3% vs 53.8%, p = 0.002) than [18F]FDG PET/CT. • [68Ga]Ga-FAPI-04/[18F]FAPI-42 PET/CT depicted more positive lymph nodes than [18F]FDG PET/CT (637 vs 407); however, both underestimated N staging compared to pathological N staging.


Subject(s)
Peritoneal Neoplasms , Stomach Neoplasms , Fluorodeoxyglucose F18 , Gallium Radioisotopes , Humans , Male , Peritoneal Neoplasms/diagnostic imaging , Peritoneum , Positron Emission Tomography Computed Tomography/methods , Quinolines , Retrospective Studies , Stomach Neoplasms/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL