Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Chin J Integr Med ; 28(5): 410-418, 2022 May.
Article in English | MEDLINE | ID: mdl-34581940

ABSTRACT

OBJECTIVE: To reveal the neuroprotective effect and the underlying mechanisms of a mixture of the main components of Panax notoginseng saponins (TSPN) on cerebral ischemia-reperfusion injury and oxygen-glucose deprivation/reoxygenation (OGD/R) of cultured cortical neurons. METHODS: The neuroprotective effect of TSPN was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, flow cytometry and live/dead cell assays. The morphology of dendrites was detected by immunofluorescence. Middle cerebral artery occlusion (MCAO) was developed in rats as a model of cerebral ischemia-reperfusion. The neuroprotective effect of TSPN was evaluated by neurological scoring, tail suspension test, 2,3,5-triphenyltetrazolium chloride (TTC) and Nissl stainings. Western blot analysis, immunohistochemistry and immunofluorescence were used to measure the changes in the Akt/mammalian target of rapamycin (mTOR) signaling pathway. RESULTS: MTT showed that TSPN (50, 25 and 12.5 µ g/mL) protected cortical neurons after OGD/R treatment (P<0.01 or P<0.05). Flow cytometry and live/dead cell assays indicated that 25 µ g/mL TSPN decreased neuronal apoptosis (P<0.05), and immunofluorescence showed that 25 µ g/mL TSPN restored the dendritic morphology of damaged neurons (P<0.05). Moreover, 12.5 µ g/mL TSPN downregulated the expression of Beclin-1, Cleaved-caspase 3 and LC3B-II/LC3B-I, and upregulated the levels of phosphorylated (p)-Akt and p-mTOR (P<0.01 or P<0.05). In the MCAO model, 50 µ g/mL TSPN improved defective neurological behavior and reduced infarct volume (P<0.05). Moreover, the expression of Beclin-1 and LC3B in cerebral ischemic penumbra was downregulated after 50 µ g/mL TSPN treatment, whereas the p-mTOR level was upregulated (P<0.05 or P<0.01). CONCLUSION: TSPN promoted neuronal survival and protected dendrite integrity after OGD/R and had a potential therapeutic effect by alleviating neurological deficits and reversing neuronal loss. TSPN promoted p-mTOR and inhibited Beclin-1 to alleviate ischemic damage, which may be the mechanism that underlies the neuroprotective activity of TSPN.


Subject(s)
Brain Ischemia , Neuroprotective Agents , Panax notoginseng , Reperfusion Injury , Saponins , Animals , Beclin-1 , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Glucose , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/drug therapy , Mammals/metabolism , Neuroprotection , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Oxygen , Proto-Oncogene Proteins c-akt/metabolism , Rats , Reperfusion Injury/metabolism , Saponins/pharmacology , Saponins/therapeutic use , TOR Serine-Threonine Kinases/metabolism
2.
Neurotox Res ; 39(6): 1959-1969, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34773594

ABSTRACT

Isoquercitrin (ISO), an extract from Chinese traditional herb, exhibits potent neuroprotective roles in various disease models. However, its role in stroke is not fully understood. We established oxygen-glucose deprivation and reoxygenation (OGD/R) model in SH-SY5Y cell to study the roles of ISO in stroke. In the experiment, the changes of LDH level and cell viability (MTT) were analyzed. Apoptotic cells stained with anti-Annexin V antibody and propidium iodide (PI) were detected by flow cytometry. The mRNA and protein level of aldolase C (ALDOC) and nuclear factor erythroid 2-related factor (Nrf2) was determined by real-time quantitative polymerase chain reaction (qPCR) and Western blotting assay, respectively. The localization of Nrf2 was investigated by immunofluorescent assay. OGD/R reduced cell viability via inducing cell apoptosis, while ISO treatment reduced the level of apoptosis in OGD/R-treated SH-SY5Y cells ISO rescued OGD/R-treated cells. Mechanistically, the expression of Nrf2 and ALDOC was upregulated upon ISO treatment, while knockdown of ALDOC diminished the activation of autophagy and hence inhibited ISO-mediated protective activity. We further demonstrated that ISO enhanced ALDOC transcription by promoting nuclear translocation of Nrf2, and suppression of Nrf2 decreased the expression of ALDOC. Our data revealed that ISO exhibited neuroprotective activity in OGD/R model through Nrf2-ALDOC-autopagy axis and highlighted the potential application of ISO in stroke treatment.


Subject(s)
Fructose-Bisphosphate Aldolase/metabolism , Glucose/deficiency , Hypoxia/drug therapy , NF-E2-Related Factor 2/metabolism , Quercetin/analogs & derivatives , Apoptosis/drug effects , Blotting, Western , Cell Line, Tumor , Glucose/metabolism , Humans , Hypoxia/metabolism , L-Lactate Dehydrogenase/metabolism , Quercetin/pharmacology , Real-Time Polymerase Chain Reaction , Up-Regulation/drug effects
3.
Exp Neurobiol ; 30(6): 401-414, 2021 Dec 31.
Article in English | MEDLINE | ID: mdl-34983881

ABSTRACT

Ischaemic stroke is a common condition leading to human disability and death. Previous studies have shown that oleanolic acid (OA) ameliorates oxidative injury and cerebral ischaemic damage, and miR-186-5p is verified to be elevated in serum from ischaemic stroke patients. Herein, we investigated whether OA regulates miR-186-5p expression to control neuroglobin (Ngb) levels, thereby inhibiting neuronal pyroptosis in ischaemic stroke. Three concentrations of OA (0.5, 2, or 8 µM) were added to primary hippocampal neurons subjected to oxygen-glucose deprivation/reperfusion (OGD/R), a cell model of ischaemic stroke. We found that OA treatment markedly inhibited pyroptosis. qRT-PCR and western blot revealed that OA suppressed the expression of pyroptosis-associated genes. Furthermore, OA inhibited LDH and proinflammatory cytokine release. In addition, miR-186-5p was downregulated while Ngb was upregulated in OA-treated OGD/R neurons. MiR-186-5p knockdown repressed OGD/R-induced pyroptosis and suppressed LDH and inflammatory cytokine release. In addition, a dual luciferase reporter assay confirmed that miR-186-5p directly targeted Ngb. OA reduced miR-186-5p to regulate Ngb levels, thereby inhibiting pyroptosis in both OGD/R-treated neurons and MCAO mice. In conclusion, OA alleviates pyroptosis in vivo and in vitro by downregulating miR-186-5p and upregulating Ngb expression, which provides a novel theoretical basis illustrating that OA can be considered a drug for ischaemic stroke.

4.
Eur J Pharmacol ; 858: 172480, 2019 Sep 05.
Article in English | MEDLINE | ID: mdl-31228453

ABSTRACT

Bone formation refers to a series of complex events related to the activities of osteoblasts. In this study, we evaluated the osteogenesis activity of a natural compound named isocoumarin A that was isolated from the rhizomes of Polygonum amplexicaule on the non-transformed preosteoblastic cell line MC3T3-E1 for an in vitro study, and the results revealed that it increased the proliferation and promoted the mineralization of the extracellular matrix of MC3T3-E1 cells after treatment for 3 d in a dose-dependent manner. The cell metabolic activity peaked at 169% at 10 µM, and the activity of alkaline phosphatase (ALP) tripled to 15.94 U/mg compared with the control group. The protein levels of morphogenetic protein 2 (BMP-2), runt-related transcription factor 2 (RUNX2), ALP, and the mRNA levels of ALP, type I collagen (COL-1), and osteocalcin (OCN) were also upregulated after isocoumarin A administration. The mechanism investigation revealed that these effects were associated with the activation of the p-Akt/p-Erk1/2-activated BMP/RUNX2 signaling pathway. Subsequently, the in vivo investigation on the zebrafish embryos model demonstrated that isocoumarin A (0.30 mM) increased the number of vertebrae (5.38 ±â€¯2.07 pcs) and the vertebral area (433.25 ±â€¯111.77 µm2) in the development process of zebrafish embryos after a 7-day postfertilization (dpf) culture compared with the control group (2.50 ±â€¯1.16 pcs and 209.75 ±â€¯86.40 µm2). Together, these results indicated that isocoumarin A could be viewed as a promising candidate in early drug discovery and development to promote the healing of fractures and postmenopausal osteoporosis.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Isocoumarins/pharmacology , Osteogenesis/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , 3T3 Cells , Animals , Calcification, Physiologic/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Mice , Signal Transduction/drug effects , Zebrafish
5.
Angew Chem Int Ed Engl ; 53(23): 5796-9, 2014 Jun 02.
Article in English | MEDLINE | ID: mdl-24729281

ABSTRACT

Suffrutines A (1) and B (2), a pair of novel photochemical Z/E isomeric indolizidine alkaloids, with a unique and highly conjugated C20 skeleton, were isolated from the roots of Flueggea suffruticosa. The structures were elucidated by extensive analysis of NMR spectra and single-crystal X-ray diffraction. The light-induced isomerization and hypothetical biogenetic pathway to 1 and 2, as well as their activity for regulating the morphology of Neuro-2a cells are also discussed.


Subject(s)
Alkaloids/chemistry , Biological Products/chemistry , Drugs, Chinese Herbal/chemistry , Fruit/chemistry , Indolizidines/chemistry , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL