Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Biotechnol Bioeng ; 95(1): 106-19, 2006 Sep 05.
Article in English | MEDLINE | ID: mdl-16673415

ABSTRACT

An important challenge facing therapeutic protein production in mammalian cell culture is the cleavage of terminal sialic acids on recombinant protein glycans by the glycosidase enzymes released by lysed cells into the supernatant. This undesired phenomenon results in a protein product which is rapidly cleared from the plasma by asialoglycoprotein receptors in the liver. In this study, RNA interference was utilized as a genetic approach to silence the activity of sialidase, a glycosidase responsible for cleaving terminal sialic acids on IFN-gamma produced by Chinese Hamster Ovary (CHO) cells. We first identified a 21-nt double stranded siRNA that reduced endogenous sialidase mRNA and protein activity levels. Potency of each siRNA sequences was compared using real time RT-PCR and a sialidase activity assay. We next integrated the siRNA sequence into CHO cells, allowing production and selection of stable cell lines. We isolated stable clones with sialidase activity reduced by over 60% as compared to the control cell line. Micellar electrokinetic chromatography (MEKC), thiobarbituric acid assay (TAA), and high performance anion exchange chromatography (HPAEC) coupled to amperometric detection were performed to analyze glycan site occupancy, sialic acid content, and distribution of asialo-/sialylated-glycan structures, respectively. Two of the stable clones successfully retained the full sialic acid content of the recombinant IFN-gamma, even upon cells' death. This was comparable to the case where a chemically synthesized sialidase inhibitor was used. These results demonstrated that RNA interference of sialidase can prevent the desialylation problem in glycoprotein production, resulting improved protein quality during the entire cell culture process.


Subject(s)
Genetic Enhancement/methods , Glycoproteins/metabolism , N-Acetylneuraminic Acid/metabolism , Neuraminidase/genetics , Neuraminidase/metabolism , RNA Interference , Animals , CHO Cells , Cricetinae , Cricetulus , Glycoproteins/isolation & purification , N-Acetylneuraminic Acid/isolation & purification , Protein Engineering/methods
2.
Biotechnol Bioeng ; 89(2): 164-77, 2005 Jan 20.
Article in English | MEDLINE | ID: mdl-15593097

ABSTRACT

As we pursue the means to improve yields to meet growing therapy demands, it is important to examine the impact of process control on glycosylation patterns to ensure product efficacy and consistency. In this study, we describe a dynamic on-line fed-batch strategy based on low glutamine/glucose concentrations and its impact on cellular metabolism and, more importantly, the productivity and N-glycosylation quality of a model recombinant glycoprotein, interferon gamma (IFN-gamma). We found that low glutamine fed-batch strategy enabled up to 10-fold improvement in IFN-gamma yields, which can be attributed to reduced specific productivity of ammonia and lactate. Furthermore, the low glutamine concentration (0.3 mM) used in this fed-batch strategy could maintain both the N-glycosylation macro- and microheterogeneity of IFN-gamma. However, very low glutamine (<0.1 mM) or glucose (<0.70 mM) concentrations can lead to decreased sialylation and increased presence of minor glycan species consisting of hybrid and high-mannose types. This shows that glycan chain extension and sialylation can be affected by nutrient limitation. In addition to nutrient limitation, we also found that N-glycosylation quality can be detrimentally affected by low culture viability. IFN-gamma purified at low culture viability had both lower sialylation as well as glycans of lower molecular masses, which can be attributed to extensive degradation by intracellular glycosidases released by cytolysis. Therefore, in order to maintain good N-glycosylation quality, there is a need to consider both culture viability and nutrient control setpoint in a nutrient-limiting fed-batch culture strategy. A greater understanding of these major factors that affect N-glycosylation quality would surely facilitate future development of effective process controls.


Subject(s)
Bioreactors , Cell Culture Techniques/methods , Cell Survival/physiology , Glucose/metabolism , Glutamine/metabolism , Interferon-gamma/biosynthesis , Protein Engineering/methods , Animals , CHO Cells , Cell Proliferation , Cricetinae , Cricetulus , Feedback/physiology , Glycosylation , Interferon-gamma/genetics , Online Systems , Recombinant Proteins/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL