Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; : e202407372, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38895749

ABSTRACT

Ion exchange membranes (IEMs) play a critical role in aqueous organic redox flow batteries (AORFBs). Traditional IEMs that feature microphase-separated microstructures are well developed and easily available but suffer from the conductivity/selectivity tradeoff. The emerging charged microporous polymer membranes show the potential to overcome this tradeoff, yet their commercialization is still hindered by tedious syntheses and demanding conditions. We herein combine the advantages of these two types of membrane materials via simple in-situ hypercrosslinking of conventional IEMs into microporous ones. Such a concept is exemplified by the very cheap commercial quaternized polyphenylene oxide membrane. The hypercrosslinking treatment turns poor-performance membranes into high-performance ones, as demonstrated by the above 10-fold selectivity enhancement and much-improved conductivities that more than doubled. This turn is also confirmed by the effective and stable pH-neutral AORFB with decreased membrane resistance and at least an order of magnitude lower capacity loss rate. This battery shows advantages over other reported AORFBs in terms of a low capacity loss rate (0.0017% per cycle) at high current density. This work provides an economically feasible method for designing AORFB-oriented membranes with microporosity.

2.
JACS Au ; 2(5): 1214-1222, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35647585

ABSTRACT

Bipyridinium derivatives represent the most extensively explored anolyte materials for pH-neutral aqueous organic redox flow batteries, and most derivatives feature two separate electron-transfer steps that cause a sharp decrease in cell voltage during discharge. Here, we propose a strategy to fulfill the concurrent two-electron electrochemical reaction by designing extended bipyridinium derivatives (exBPs) with a reduced energy difference between the lowest unoccupied molecular orbital of exBPs and the ß-highest occupied molecular orbital of the singly reduced form. To demonstrate, a series of exBPs are synthesized and exhibit a single peak at redox potentials of -0.75 to -0.91 V (vs standard hydrogen electrode (SHE)), as opposed to the two peaks of most bipyridinium derivatives. Cyclic voltammetry along with diffusion-ordered spectroscopy and rotating disk electrode experiments confirm that this peak corresponds to a concurrent two-electron transfer. When examined in full-flowing cells, all exBPs demonstrate one charge/discharge plateau and two-electron storage. Continuous galvanostatic cell cycling reveals the side reactions leading to capacity fading, and we disclose the underlying mechanism by identifying the degradation products. By prohibiting the dimerization/ß-elimination side reactions, we acquire a 0.5 M (1 M e-) exDMeBP/FcNCl cell with a high capacity of 22.35 Ah L-1 and a capacity retention rate of 99.95% per cycle.

3.
Angew Chem Int Ed Engl ; 59(24): 9564-9573, 2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32133738

ABSTRACT

Membranes which allow fast and selective transport of protons and cations are required for a wide range of electrochemical energy conversion and storage devices, such as proton-exchange membrane (PEM) fuel cells (PEMFCs) and redox flow batteries (RFBs). Herein we report a new approach to designing solution-processable ion-selective polymer membranes with both intrinsic microporosity and ion-conductive functionality. Polymers are synthesized with rigid and contorted backbones, which incorporate hydrophobic fluorinated and hydrophilic sulfonic acid functional groups, to produce membranes with negatively charged subnanometer-sized confined ionic channels. The ready transport of protons and cations through these membranes, and the high selectivity towards nanometer-sized redox-active molecules, enable efficient and stable operation of an aqueous alkaline quinone redox flow battery and a hydrogen PEM fuel cell.

4.
ChemSusChem ; 13(9): 2245-2249, 2020 May 08.
Article in English | MEDLINE | ID: mdl-32162480

ABSTRACT

Viologen derivatives have been developed as negative electrolyte for neutral aqueous organic redox flow batteries (AOFBs), but the structure-performance relationship remains unclear. Here, it was investigated how the structure of viologens impacts their electrochemical behavior and thereby the battery performance, by taking hydroxylated viologens as examples. Calculations of frontier molecular orbital energy and molecular configuration promise to be an effective tool in predicting potential, kinetics, and stability, and may be broadly applicable. Specifically, a modified viologen derivative, BHOP-Vi, was proved to be the most favorable structure, enabling a concentrated 2 m battery to exhibit a power density of 110.87 mW cm-2 and an excellent capacity retention rate of 99.953 % h-1 .

SELECTION OF CITATIONS
SEARCH DETAIL
...