Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 176
Filter
1.
Fitoterapia ; 177: 106085, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901806

ABSTRACT

Three new meroterpenoids (1-3) and ten known ones (4-13) were obtained from the endophytic fungus Talaromyces primulinus H21 isolated from the plant of Euphorbia sikkimensis. Their structures including their absolute configurations were elucidated by extensive analysis of spectroscopic data such as HR-ESI-MS, 1D/2D NMR, and X-ray diffraction of single crystal together with comparison of experimental ECD with calculated ECD. All compounds were examined for their inhibitory effects on nitric oxide (NO) production induced by lipopolysaccharide (LPS) in RAW264.7 cells, and compounds 3, 9, 12, and 13 exhibited certain inhibition on NO production, with IC50 values of 27.19, 41.55, 25.23, and 24.71 µM, respectively.

2.
Cell Chem Biol ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38821064

ABSTRACT

Mitochondrial DNA (mtDNA) G-quadruplexes (G4s) have important regulatory roles in energy metabolism, yet their specific functions and underlying regulatory mechanisms have not been delineated. Using a chemical-genetic screening strategy, we demonstrated that the JAK/STAT3 pathway is the primary regulatory mechanism governing mtDNA G4 dynamics in hypoxic cancer cells. Further proteomic analysis showed that activation of the JAK/STAT3 pathway facilitates the translocation of RelA, a member of the NF-κB family, to the mitochondria, where RelA binds to mtDNA G4s and promotes their folding, resulting in increased mtDNA instability, inhibited mtDNA transcription, and subsequent mitochondrial dysfunction. This binding event disrupts the equilibrium of energy metabolism, catalyzing a metabolic shift favoring glycolysis. Collectively, the results provide insights into a strategy employed by cancer cells to adapt to hypoxia through metabolic reprogramming.

3.
Nat Prod Res ; : 1-8, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38436324

ABSTRACT

Phytochemical investigation on the plant endophytic fungus Penicillium ferraniaense GE-7 led to the isolation of 18 compounds including one new α-pyrone derivative, peniferranige A (1). The structure including the absolute configuration of compound 1 was elucidated by NMR, HRMS, and ECD data. Demethoxyfumitremorgin C (16) and meleagrin (17) possessed moderate activities against the human lung cancer cell line H1975 with IC50 values of 28.52 ± 1.07 and 13.94 ± 1.92 µM, respectively.

4.
Nat Prod Res ; 38(6): 986-993, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37157835

ABSTRACT

Phytochemical investigation on the plant of Wikstroemia alternifolia led to the isolation of 26 compounds including two new ones, wikstralternifols A and B (1 and 7). Their structures including the absolute configuration were elucidated by spectroscopic data together with analysis of experimental and calculated ECD data. All compounds were isolated from this plant for the first time, and their main structural types were lignans, sesquiterpenoids, and flavonoids. In the sodium nitroprusside-induced rat pheochromocytoma PC-12 cell model, the neuroprotective activities of the selected sesquiterpenoids (1 and 4) and lignans (7 - 14) were screened at the concentration of 10 µM, and 7 - 14 displayed better activities than the positive control edaravone.


Subject(s)
Lignans , Sesquiterpenes , Wikstroemia , Wikstroemia/chemistry , Lignans/pharmacology , Lignans/chemistry , Flavonoids/pharmacology , Plants , Sesquiterpenes/chemistry , Molecular Structure
5.
Acta Pharm Sin B ; 13(12): 4934-4944, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38045040

ABSTRACT

Nuclear transporter importin-ß1 is emerging as an attractive target by virtue of its prevalence in many cancers. However, the lack of druggable inhibitors restricts its therapeutic proof of concept. In the present work, we optimized a natural importin-ß1 inhibitor DD1 to afford an improved analog DD1-Br with better tolerability (>25 folds) and oral bioavailability. DD1-Br inhibited the survival of castration-resistant prostate cancer (CRPC) cells with sub-nanomolar potency and completely prevented tumor growth in resistant CRPC models both in monotherapy (0.5 mg/kg) and in enzalutamide-combination therapy. Mechanistic study revealed that by targeting importin-ß1, DD1-Br markedly inhibited the nuclear accumulation of multiple CRPC drivers, particularly AR-V7, a main contributor to enzalutamide resistance, leading to the integral suppression of downstream oncogenic signaling. This study provides a promising lead for CRPC and demonstrates the potential of overcoming drug resistance in advanced CRPC via targeting importin-ß1.

6.
J Nat Prod ; 86(12): 2691-2702, 2023 12 22.
Article in English | MEDLINE | ID: mdl-37974450

ABSTRACT

Thirteen new Euphorbia diterpenoids, euphylonanes A-M (1-13), and eight known ones were isolated from the whole plants of Euphorbia hylonoma. Compounds 1 and 2 are two rearranged ingenanes bearing a rare 6/6/7/3-fused ring system. Compound 3 represents the first example of a 9,10-epoxy tigliane, while 4-21 are typical ingenanes varying with substituents. Structures were elucidated using a combination of spectroscopic, computational, and chemical methods. Most ingenanes exerted a significant antiadipogenic effect in 3T3-L1 adipocytes, among which 4 was the most active with an EC50 value of 0.60 ± 0.27 µM. Mechanistic study revealed that 4 inhibited the adipogenesis and lipogenesis in adipocytes via activation of the AMPK signaling pathway.


Subject(s)
Diterpenes , Euphorbia , Phorbols , Euphorbia/chemistry , Diterpenes/pharmacology , Diterpenes/chemistry , Adipogenesis , Molecular Structure
7.
Anal Chem ; 95(45): 16609-16617, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37917789

ABSTRACT

Mitochondrion-lysosome interactions have garnered significant attention in recent research. Numerous studies have shown that mitochondrion-lysosome interactions, including mitochondrion-lysosome contact (MLC) and mitophagy, are involved in various biological processes and pathological conditions. Single fluorescent probes are termed a pivotal chemical tool in unraveling the intricate spatiotemporal interorganelle interplay in live cells. However, current chemical tools are insufficient to deeply understand mitochondrion-lysosome dynamic interactions and related diseases, Moreover, the rational design of mitochondrion-lysosome dual-targeting fluorescent probes is intractable. Herein, we designed and synthesized a pH-sensitive fluorescent probe called INSA, which could simultaneously light up mitochondria (red emission) and lysosomes (green emission) for their internal pH differences. Employing INSA, we successfully recorded long-term dynamic interactions between lysosomes and mitochondria. More importantly, the increasing mitochondrion-lysosome interactions in ferroptotic cells were also revealed by INSA. Further, we observed pH variations in mitochondria and lysosomes during ferroptosis for the first time. In brief, this work not only introduced a pH-sensitive fluorescent probe INSA for the disclosure of the mitochondrion-lysosome dynamic interplays but also pioneered the visualization of the organellar pH alternation in a specific disease model.


Subject(s)
Fluorescent Dyes , Lysosomes , Humans , Fluorescent Dyes/metabolism , Lysosomes/metabolism , Mitochondria , HeLa Cells , Hydrogen-Ion Concentration
8.
Nat Prod Bioprospect ; 13(1): 21, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37410272

ABSTRACT

Three new halimane furanoditerpenoids (1-3) and three new clerodane furanoditerpenoids (4-6), along with seven known terpenoids including four pimarane diterpenoids (7-10) and three norisoprenoids (11-13) were isolated from the 95% EtOH extracts of the plants of Croton cnidophyllus. The 2D structures including absolute configuration of new furanoditerpenoids (1-6) were elucidated by analysis of their HRMS and NMR data as well as comparison of experimental and calculated ECD curves. Bioassay revealed that two compounds (8 and 9) possessed certain inhibitory effects against NO production stimulated by LPS, with IC50 values of 19.00 ± 1.76 and 21.61 ± 1.11 µM, respectively.

9.
J Med Chem ; 66(8): 5839-5858, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37014798

ABSTRACT

Raptor, a regulatory-associated protein of mTOR, has been genetically proved to be an important regulator in lipogenesis. However, its druggable potential is rarely investigated, largely due to the lack of an inhibitor. In this study, the antiadipogenic screening of a daphnane diterpenoid library followed by target fishing led to the identification of a Raptor inhibitor, 1c (5/7/6 carbon ring with orthoester and chlorine functionalities). Pharmacodynamic studies verified that 1c is a potent and tolerable antiadipogenic agent in vitro and in vivo. Mechanistic studies revealed that the targeting of Raptor by 1c could block the formation of mTORC1 and then downregulate the downstream S6K1- and 4E-BP1-mediated C/EBPs/PPARγ signaling, eventually retarding adipocyte cell differentiation at the early stage. These findings suggest that Raptor can be explored as a novel therapeutic target for obesity and its related complications, and 1c as the first Raptor inhibitor may provide a new therapeutic option for these conditions.


Subject(s)
Multiprotein Complexes , Phosphoproteins , Regulatory-Associated Protein of mTOR/metabolism , Phosphoproteins/metabolism , Phosphorylation , Multiprotein Complexes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Transcription Factors/metabolism
10.
J Med Chem ; 66(8): 5484-5499, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37036951

ABSTRACT

Developing c-MYC transcription inhibitors that target the G-quadruplex has generated significant interest; however, few compounds have demonstrated specificity for c-MYC G-quadruplex and cancer cells. In this study, we designed and synthesized a series of benzoazole derivatives as potential G-quadruplex ligand-based c-MYC transcription inhibitors. Surprisingly, benzoselenazole derivatives, which are rarely reported as G-quadruplex ligands, demonstrated greater c-MYC G-quadruplex selectivity and cancer cell specificity compared to their benzothiazole and benzoxazole analogues. The most promising compound, benzoselenazole m-Se3, selectively inhibited c-MYC transcription by specifically stabilizing the c-MYC G-quadruplex. This led to selective inhibition of hepatoma cell growth and proliferation by affecting the MYC target gene network, as well as effective tumor growth inhibition in hepatoma xenografts. Collectively, our study demonstrates that m-Se3 holds significant promise as a potent and selective inhibitor of c-MYC transcription for cancer treatment. Furthermore, our findings inspire the development of novel selenium-containing heterocyclic compounds as c-MYC G-quadruplex-specific ligands and transcription inhibitors.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Ligands , Genes, myc , Cell Proliferation
11.
Sci Total Environ ; 874: 162481, 2023 May 20.
Article in English | MEDLINE | ID: mdl-36858233

ABSTRACT

Many lakes are suffering from eutrophication and heavy metals-contamination. However, the combined impacts of algae bloom and its induced variations in heavy metals on microbial community in sediment from eutrophic lakes remain unclear. In this study, we performed field experiments to investigate how algae bloom impacted water soluble organic matter (WSOM) and heavy metals in sediment from Chaohu Lake, a eutrophic shallow lake, and probed their combined impacts on sediment bacterial community structure. The results showed that algae bloom increased WSOM quantity, in particular, the soluble microbial by-product-like (SMP) and fulvic acid-like (Fa-L) components markedly enhanced by 203.70 % and 70.17 %, respectively. We also found that algae bloom redistributed the spatial patterns of heavy metals and altered their chemical species in sediment, then promoted contamination degree and potential ecological risk of heavy metals in sediment. Moreover, sediment bacterial community richness and diversity obviously decreased after algae bloom, and the variance partitioning analysis (VPA) results showed that combined impacts of algae-induced changes in WSOM and heavy metals explained 66.56 % of the variations in bacterial community structure. These findings depicted how algae bloom influence sediment WSOM and heavy metals, and revealed the combined impacts of algae-induced variations on microbial community structure in shallow eutrophic lake.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Water/analysis , Lakes/chemistry , Geologic Sediments/chemistry , Metals, Heavy/toxicity , Metals, Heavy/analysis , Eutrophication , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , China
12.
Entropy (Basel) ; 25(3)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36981430

ABSTRACT

Blind deconvolution is a method that can effectively improve the fault characteristics of rolling bearings. However, the existing blind deconvolution methods have shortcomings in practical applications. The minimum entropy deconvolution (MED) and the optimal minimum entropy deconvolution adjusted (OMEDA) are susceptible to extreme values. Furthermore, maximum correlated kurtosis deconvolution (MCKD) and multipoint optimal minimum entropy deconvolution adjusted (MOMEDA) are required prior knowledge of faults. On the basis of the periodicity and impact of bearing fault signals, a new deconvolution algorithm, namely one based on maximum correlation spectral negentropy (CSNE), which adopts the particle swarm optimization (PSO) algorithm to solve the filter coefficients, is proposed in this paper. Verified by the simulated vibration model signal and the experimental simulation signal, the PSO-CSNE algorithm proposed in this paper overcomes the influence of harmonic signals and random pulse signals more effectively than other blind deconvolution algorithms when prior knowledge of the fault is unknown.

13.
Mar Drugs ; 21(3)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36976207

ABSTRACT

Marine toxins (MTs) are a group of structurally complex natural products with unique toxicological and pharmacological activities. In the present study, two common shellfish toxins, okadaic acid (OA) (1) and OA methyl ester (2), were isolated from the cultured microalgae strain Prorocentrum lima PL11. OA can significantly activate the latent HIV but has severe toxicity. To obtain more tolerable and potent latency reversing agents (LRAs), we conducted the structural modification of OA by esterification, yielding one known compound (3) and four new derivatives (4-7). Flow cytometry-based HIV latency reversal activity screening showed that compound 7 possessed a stronger activity (EC50 = 46 ± 13.5 nM) but was less cytotoxic than OA. The preliminary structure-activity relationships (SARs) indicated that the carboxyl group in OA was essential for activity, while the esterification of carboxyl or free hydroxyls were beneficial for reducing cytotoxicity. A mechanistic study revealed that compound 7 promotes the dissociation of P-TEFb from the 7SK snRNP complex to reactivate latent HIV-1. Our study provides significant clues for OA-based HIV LRA discovery.


Subject(s)
Dinoflagellida , HIV Infections , HIV-1 , Humans , Okadaic Acid/toxicity , Virus Latency , Marine Toxins/chemistry , Dinoflagellida/chemistry
14.
J Med Chem ; 66(7): 5171-5184, 2023 04 13.
Article in English | MEDLINE | ID: mdl-36961300

ABSTRACT

Mutations in NRAS promote tumorigenesis and drug resistance. As this protein is often considered an undruggable target, it is urgent to develop novel strategies to suppress NRAS for anticancer therapy. Recent reports indicated that a G-quadruplex (G4) structure formed in the untranslated region of NRAS mRNA can downregulate NRAS translation, suggesting a potential NRAS suppression strategy. Here, we developed a novel cell-based method for large-scale screening of NRAS G4 ligand using the G-quadruplex-triggered fluorogenic hybridization probe and successfully identified the clinically used agent Octenidine as a potent NRAS repressor. This compound suppressed NRAS translation, blocked the MAPK and PI3K-AKT signaling, and caused concomitant cell cycle arrest, apoptosis, and autophagy. It exhibited better antiproliferation effects over clinical antimelanoma agents and could inhibit the growth of NRAS-mutant melanoma in a xenograft mouse model. Our results suggest that Octenidine may be a prominent anti-NRAS-mutant melanoma agent and represent a new NRAS-mutant melanoma therapy option.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Animals , Mice , Phosphatidylinositol 3-Kinases/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Cell Line, Tumor , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Mutation , Membrane Proteins/genetics , Membrane Proteins/metabolism
15.
Nat Prod Res ; : 1-8, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36927252

ABSTRACT

Three new prenylated dihydroflavones, moralbaflavones A-C (1-3), together with four known ones (4a/4b, 5, and 6) were isolated from the root barks of Morus alba L. Their structures including the absolute configurations were determined by the analysis of HRMS, NMR, and ECD data. The neuroprotective properties of these prenylated dihydroflavones were screened at the concentration of 10 µM in the sodium nitroprusside-induced rat pheochromocytoma PC-12 cells, and the results showed moralbaflavone C (3) possessed significant neuroprotective activity, being more potent than the positive control edaravone.

16.
Nat Prod Bioprospect ; 13(1): 7, 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36813988

ABSTRACT

Five new toosendanin limonoids with highly oxidative furan ring walsurobustones A-D (1-4), and one new furan ring degraded limonoid walsurobustone E (5) together with one known compound toonapubesic acid B (6) were isolated from the leaves of Walsura robusta. Their structures were elucidated by NMR and MS data. Especially, the absolute configuration of toonapubesic acid B (6) was confirmed by X-ray diffraction study. Compounds 1-6 exhibited good cytotoxicity against the cancer cell lines HL-60, SMMC-7721, A-549, MCF-7, and SW480.

17.
J Nat Prod ; 86(2): 434-439, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36792549

ABSTRACT

Biscroyunoid A (1), a 19-nor-clerodane diterpenoid dimer featuring a unique C-16-C-12' linkage and containing an unusual 4,7-dihydro-5H-spiro[benzofuran-6,1'-cyclohexane] motif, together with its biosynthetic precursor, croyunoid A (2), were isolated from Croton yunnanensis. Their structures were determined by spectroscopic, computational, and single-crystal X-ray diffraction methods. Compound 1 exerted an antihepatic fibrosis effect in LX-2 cells via inhibition of TGFß-Smad2/3 signaling.


Subject(s)
Croton , Diterpenes, Clerodane , Diterpenes , Diterpenes, Clerodane/chemistry , Croton/chemistry , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Molecular Structure , Diterpenes/chemistry
18.
Ann Transl Med ; 11(2): 108, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36819587

ABSTRACT

Background: Vascular dementia (VD) is a disease that affects brain function through cerebrovascular disease. Due to its complex pathogenesis, there is no effective drug treatment for VD. The present study aimed to evaluate the role of acupoint catgut embedding in the treatment of rats with VD and its possible molecular mechanism. Methods: A modified 4 vessel occlusion (4-VO) method was used to establish a VD model rat, and spatial learning and memory ability was assessed using the Morris water maze (MWM) test. The protein expression levels were detected by Western blot. Hematoxylin and eosin (HE) staining was used for histological analysis and enzyme-linked immunosorbent assay (ELISA) was applied for analysis of serum inflammatory factors. Results: We successfully constructed VD model rats with spatial learning and memory impairment, hippocampus injury, and high inflammatory response. Treatment of VD rats with acupoint catgut embedding significantly reduced escape latency and increased the time in the target quadrant and platform crossing times. VD-mediated hippocampal tissue damage and inflammatory reaction [down-regulating interleukin-1ß (IL-1ß), interleukin-6 (IL-6)] were significantly alleviated by acupoint catgut embedding treatment. In addition, further mechanism exploration found that acupoint catgut embedding treatment could improve the activity of the toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor-κB (NF-κB) signaling pathway. In summary, acupoint catgut embedding treatment improved spatial learning and memory loss, alleviated pathological damage of the hippocampus, and inhibited inflammation response in VD rats, which was probably related to the inhibition of the TLR4/MyD88/NF-κB signaling pathway. Conclusions: Acupoint catgut embedding may warrant further study as an adjuvant therapy for the treatment of VD.

19.
Huan Jing Ke Xue ; 44(1): 66-74, 2023 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-36635796

ABSTRACT

Based on the sounding data of VOCs in the lower troposphere (0-1000 m) in the northern suburb of Nanjing in the autumn of 2020, the vertical profile distribution, diurnal variation, and photochemical reactivity of VOCs in this area were analyzed. The results showed that the volume fraction of VOCs decreased with the increase in height (72.1×10-9±28.1×10-9-56.4×10-9±24.8×10-9). Alkanes at all heights accounted for the largest proportion (68%-75%), followed by aromatics (10%-12%), halohydrocarbons (10%-11%), alkenes (3%-7%), and acetylene (2%). The diurnal variation of the boundary layer had a great influence on the VOCs profile. The lower boundary layer in the morning and evening caused the volume fraction of VOCs to accumulate near the ground and lower in the upper layer. The vertical distribution of VOCs was more uniform in the afternoon. In the morning, the volume fraction proportion of alkenes (alkanes) with strong (weak) photochemical reactivity decreased (increased) with the increase in height, indicating that the photochemical aging of VOCs in the upper layer was significant. In the afternoon, the vertical distribution of VOCs volume fraction and OFP in the lower troposphere were more uniform. Affected by the surrounding air masses with different sources, the volume fraction and component proportion of VOCs at each height were significantly different. The alkanes in rural air masses were vertically evenly distributed, and the proportion increased gradually with the height. The vertical negative gradient of VOCs volume fraction in the urban air mass was the largest, the volume fraction of VOCs near the ground was high, and it was rich in aromatics. The proportion of aromatics increased with the increase in VOCs volume fraction between 200-400 m height of industrial air mass. The near-surface VOCs volume fraction of the highway traffic air mass was high, and alkanes accounted for the largest proportion.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Air Pollutants/analysis , Volatile Organic Compounds/analysis , Environmental Monitoring , Alkenes/analysis , Alkanes/analysis , China , Ozone/analysis
20.
Phytochemistry ; 208: 113588, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36693579

ABSTRACT

Chromatographic fractionation of the 95% EtOH extract of the roots of Stellera chamaejasme yielded 20 sesquiterpenoids of four different types, guaiane-, carotane-, sesquicarane-, and alpiniane-types. Among them, sesquistrachanoids A-F were previously undescribed ones, whose structures including absolute configurations were elucidated by spectroscopic methods, the Mo2(OAc)4-induced ECD experiment, and analysis of experimental and calculated 1D NMR and ECD data. Sesquistrachanoid A is a 2,3-seco-guaiane-type sesquiterpenoid with a α-pyrone core and sesquistrachanoid B is the first example of 8,9-seco-guaiane-type sesquiterpenoid featured with an 1,8-δ-lactone core. Sesquistrachanoid C is a guaiane sesquiterpenoid characterized by a peroxide bridge between C-8 and C-10. All sesquiterpenoids were evaluated for their neuroprotective effects on cell damage induced by sodium nitroprusside in PC-12 cells. The bioassay results showed that six compounds at 10 µM could restore the cell viability, being comparable to that of the positive control edaravone. The mechanistic study on the most pronounced activity compound, stelleraguaianone B, demonstrated that it played a neuroprotective role by promoting the mRNA expression of antioxidant enzymes to reduce oxidative stress.


Subject(s)
Neuroprotective Agents , Sesquiterpenes , Thymelaeaceae , Molecular Structure , Neuroprotective Agents/pharmacology , Thymelaeaceae/chemistry , Sesquiterpenes, Guaiane/chemistry , Sesquiterpenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...