Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
1.
Nat Prod Res ; : 1-8, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962949

ABSTRACT

The phytochemical investigation on the rhizomes of Paris yunnanensis Franch. resulted in the discovery and characterisation of six compounds, including two new saponins named parisyunnanosides M-N (1-2), and four known ones (3-6). The structures of isolated compounds were determined by spectroscopic data analysis and chemical methods. Compound 2 is a pregnane-type saponin with a special α,ß-unsaturated carboxylic acid moiety at C-17, which is first discovered in genus Paris. The anti-inflammatory activity of the isolated compounds was assessed in vitro. The results demonstrated that compounds 3 and 4 could significantly inhibit the production of NO which was induced by LPS in RAW 264.7 cells with IC50 values of 0.67 ± 0.17 µM and 0.85 ± 0.12 µM, respectively.

2.
Fitoterapia ; 175: 105881, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38438054

ABSTRACT

Two previously undescribed cholestanol saponins, parpetiosides F - G (1-2), and six known analogs (3-8) were isolated from the rhizomes of Paris fargesii var. petiolata. Their structures were elucidated by extensive spectroscopic data analysis and chemical methods. Compound 1 was a rare 6/6/6/5/5 fused-rings cholestanol saponin with disaccharide moiety linked at C-26 of aglycone which was hardly seen in genus Paris. All of these compounds were discovered in this plant for the first time. In addition, the cytotoxicities of saponins (1-8) against three human cancer cell lines (U87, HepG2 and SGC-7901) were evaluated by CCK-8 method, and saponins 5-8 displayed certain cytotoxicities. The strong interactions between saponins 5-8 and SCUBE3, an oncogene for glioma cells, were displayed by molecular docking.


Subject(s)
Antineoplastic Agents, Phytogenic , Cholestanol , Molecular Docking Simulation , Rhizome , Saponins , Rhizome/chemistry , Humans , Saponins/isolation & purification , Saponins/pharmacology , Saponins/chemistry , Molecular Structure , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line, Tumor , Cholestanol/pharmacology , Cholestanol/chemistry , Cholestanol/isolation & purification , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Melanthiaceae/chemistry , China , Liliaceae/chemistry
3.
Int J Mol Sci ; 24(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37108310

ABSTRACT

A phytochemical investigation of the steroidal saponins from the rhizomes of Paris polyohylla var. latifolia led to the discovery and characterization of three new spirostanol saponins, papolatiosides A-C (1-3), and nine known compounds (4-12). Their structures were established via extensive spectroscopic data analysis and chemical methods. Interestingly, compounds 1 and 2 possessed a fructosyl in their oligosaccharide moiety, which is rare in natural product and was firstly reported in family Melanthiaceae. The cytotoxicity of these saponins against several human cancer cell lines was evaluated by a CCK-8 experiment. As a result, compound 1 exhibited a significant cytotoxic effect on LN229, U251, Capan-2, HeLa, and HepG2 cancer cells with IC50 values of 4.18 ± 0.31, 3.85 ± 0.44, 3.26 ± 0.34, 3.30 ± 0.38 and 4.32 ± 0.51 µM, respectively. In addition, the result of flow cytometry analysis indicated that compound 1 could induce apoptosis of glioma cells LN229. The underlying mechanism was explored by network pharmacology and western bolt experiments, which indicated that compound 1 could induce glioma cells LN229 apoptosis by regulating the EGFR/PI3K/Akt/mTOR pathway.


Subject(s)
Antineoplastic Agents , Glioma , Liliaceae , Melanthiaceae , Saponins , Humans , Rhizome/chemistry , Phosphatidylinositol 3-Kinases , Liliaceae/chemistry , Antineoplastic Agents/analysis , Saponins/pharmacology , Saponins/chemistry
4.
Nat Prod Res ; : 1-9, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37067218

ABSTRACT

Four new polyhydroxylated steroidal saponins, parisverticillatosides A-D (1-4), together with four known spirostanol saponins (5-8) were isolated from the roots of Paris verticillata. Their structures were elucidated on the basis of extensive spectroscopic analysis and chemical evidences. The discovery of the new compounds 1-4 extended the diversity and complexity of this spirostanol saponin family. The saponins 5 and 6 exhibited cytotoxicities against two human glioma cell lines.

5.
Phytochemistry ; 207: 113577, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36587887

ABSTRACT

Paris polyphylla var. yunnanensis (Franch.) Hand.-Mazz. (Melanthiaceae), an important specie of the genus Paris, has long been in a traditional Chinese medicine (TCM) for a long time. This study aimed to isolate and identify the structures of bioactive saponins from the rhizomes of P. polyphylla var. yunnanensis and evaluate their cytotoxicity against BxPC-3, HepG2, U373 and SGC-7901 carcinoma cell lines. Seven previously undescribed and seven known saponins were identified, and Paris saponins VII (PSVII) showed significant cytotoxicity against the BxPC-3 cell line with IC50 values of 3.59 µM. Furthermore, flow cytometry, transmission electron microscopy and western-bolt analysis revealed that PSVII inhibited the proliferation of BxPC-3 cells and might be involved in inducing apoptosis and pyroptosis by activating caspase-3, -7 and caspase-1, respectively.


Subject(s)
Antineoplastic Agents , Liliaceae , Melanthiaceae , Saponins , Rhizome/chemistry , Saponins/pharmacology , Liliaceae/chemistry , Melanthiaceae/chemistry
6.
Bioorg Chem ; 131: 106305, 2023 02.
Article in English | MEDLINE | ID: mdl-36495679

ABSTRACT

Phytochemical investigation on the rhizomes of Paris fargesii var. petiolata (Baker ex C. H. Wright) Wang et Tang led to the isolation of five previously undescribed steroidal saponins, parpetiosides A-E (1-5), and six known analogs (6-11). Their structures were established by extensive spectroscopic data analysis and chemical methods. Compound 5 was a rare steroidal saponin with disaccharide moiety linked at C-26 of dehydrokryptogenin that was hardly seen in the genus Paris. The cytotoxicities of the isolated compounds against three human cancer cell lines (U87, HepG2 and SGC-7901) were evaluated, and compound 1 displayed certain inhibitory effect with IC50 values of 8.02 ± 0.45, 8.24 ± 0.57 and 6.20 ± 0.79 µM, respectively. Moreover, the preliminary mechanism of 1 inhibiting the proliferation of the three cancer cell lines might be related to cell cycle distribution and the induction of S phase arrest.


Subject(s)
Antineoplastic Agents , Liliaceae , Neoplasms , Saponins , Humans , Rhizome/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/analysis , Liliaceae/chemistry , Steroids/pharmacology , Steroids/chemistry , Saponins/pharmacology , Saponins/chemistry
7.
Nat Prod Res ; 37(22): 3751-3757, 2023.
Article in English | MEDLINE | ID: mdl-36416576

ABSTRACT

The chemical constituent investigation on the root bark of Ailanthus altissima leads to the isolation of a new ß-carboline alkaloid, 14(S),15-dihydroxy-6-methoxy-ß-carboline (1), along with nine known alkaloids. The structure of new compound was elucidated on basis of extensive spectroscopic analysis, especially two-dimensional (2D) NMR techniques and the absolute configuration of C-14 was determined by ECD calculation. The neuroprotective effect of the isolated compounds on PC12 cells against the serum deprivation injury was evaluated by MTT method. As a result, compound 7 revealed protective effect on PC12 cells and the cell survival rate was significantly increased.

8.
Fitoterapia ; 159: 105179, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35337886

ABSTRACT

Three new triterpenoid saponins, heracleifolianosides A-C (1-3), together with seven known compounds (4-10), were isolated from the whole plants of Clematis heracleifolia. Moreover, three new secondary saponins (1a, 2a and 3a), two known secondary metabolites (5a and 7a) were obtained by alkaline hydrolysis. Their structures were elucidated by extensive spectroscopic analysis and chemical evidences. The cytotoxicity of eight native saponins and five prosapogenins against human breast tumor MDA-MB-231 and gastric carcinoma SGC-7901 cell lines were evaluated by MTT method. Remarkably, the prosapogenin monodesmosidic saponin 7a showed significant cytotoxicity against MDA-MB-231 or SGC-7901 cell lines with IC50 values in the range of 6.05-6.32 µmol/L. It is suggested that it might be a feasible way to change the inactive bisdesmosic triterpenoid saponins to active monodesmosic saponins by a simple procedure of alkaline hydrolysis.


Subject(s)
Antineoplastic Agents, Phytogenic , Clematis , Saponins , Triterpenes , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Clematis/chemistry , Humans , Molecular Structure , Saponins/chemistry , Saponins/pharmacology , Triterpenes/chemistry , Triterpenes/pharmacology
9.
J Biochem Mol Toxicol ; 36(3): e22973, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34967073

ABSTRACT

Many glioma patients develop resistance to temozolomide (TMZ) treatment, resulting in reduced efficacy and survival rates. TMZ-resistant cell lines SHG44R and U87R, which highly express O6 -methylguanine DNA methyltransferase (MGMT) and P-gp, were established. CN-3, a new asterosaponin, showed cytotoxic effects on TMZ-resistant cells in a dose- and time-dependent manner via reactive oxygen species (ROS)-mediated apoptosis and autophagy. Transmission electron microscopy and monodansylcadaverine (MDC) staining showed turgidity of the mitochondria and autophagosomes in CN-3-treated SHG44R and U87R cells. The autophagy inhibitor 3-methyladenine was used to confirm the important role of autophagy in CN-3 cytotoxicity in TMZ-resistant cells. The ROS scavenger N-acetyl- l-cysteine (NAC) attenuated the levels of ROS induced by CN-3 and, therefore, rescued the CN-3 cytotoxic effect on the viability of SHG44R and U87R cells by Cell Counting Kit-8 assays and JuLI-Stage videos. MDC staining also confirmed that NAC rescued an autophagosome increase in CN-3-treated SHG44R and U87R cells. Western blotting revealed that CN-3 increased Bax, cleaved-caspase 3, cytochrome C, PARP-1, LC3-Ⅱ, and Beclin1, and decreased P-AKT, Bcl-2, and p62. Further rescue experiments revealed that CN-3 induced apoptosis and autophagy through ROS-mediated cytochrome C, cleaved-caspase 3, Bcl-2, P-AKT, PARP-1, and LC3-Ⅱ. In addition, CN-3 promoted SHG44R and U87R cells sensitive to TMZ by reducing the expression of P-gp, MGMT, and nuclear factor kappa B p65, and it had a synergistic cytotoxic effect with TMZ. Moreover, CN-3 disrupted the natural cycle arrest and inhibited the migration of SHG44R and U87R cells by promoting cyclin E1 and D1, and by decreasing P21, P27, N-cadherin, ß-catenin, transforming growth factor beta 1, and Smad2.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Drug Resistance, Neoplasm/drug effects , Glioblastoma/drug therapy , Reactive Oxygen Species/metabolism , Saponins/pharmacology , Temozolomide/pharmacology , Cell Line, Tumor , Glioblastoma/metabolism , Humans
10.
Nat Prod Res ; 36(8): 2118-2124, 2022 Apr.
Article in English | MEDLINE | ID: mdl-33336584

ABSTRACT

The chemical constituent investigation on the starfish Culcita novaeguineae resulted in the isolation of two new polyhydroxylated steroidal glycosides and two known ones. The new compounds were identified as (25S)-3-O-(2-O-methyl-ß-D-xylopyranosyl)-26-O-(ß-D-xylopyranosyl)-cholest-4-ene-3ß,6ß,7α,8,15α,16ß,26-heptaol (1) and (25S)-3-O-(2-O-methyl-ß-D-xylopyranosyl)-26-O-(ß-D-xylopyranosyl)-cholest-4,24(28)-diene-3ß,6ß,7α,8,15α,16ß,26-heptaol (2) and the known compounds were determined as linckosides I and H (3-4). The structures of the isolated compounds were elucidated on the basis of extensive spectroscopic studies and chemical evidence. In addition, the cytotoxicity of the two new compounds against human glioblastoma cell lines U87, U251 and SHG44 was evaluated by MTT method.


Subject(s)
Starfish , Steroids , Animals , Cell Line , Glycosides/chemistry , Humans , Starfish/chemistry , Steroids/chemistry
11.
Bioorg Med Chem ; 41: 116188, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34000508

ABSTRACT

Our continuing search for marine bioactive secondary metabolites led to the screening of crude extracts of sea cucumbers by the model of Pyricularia oryzae. A new sulfated triterpene glycoside, coloquadranoside A (1), together with four known triterpene glycosides, philinopside A, B, E and pentactaside B (2-5) were isolated from the sea cucumber Colochirus quadrangularis, and their structures were elucidated using extensive spectroscope analysis (ESI-MS, 1D and 2D NMR) and chemical methods. Coloquadranoside A possesses a 16-acetyloxy group in the holostane-type triterpene aglycone with a 7(8)-double bond, a double bond (25,26) at its side chain, and two ß-d-xylose in the carbohydrate chain. Coloquadranoside A exhibits in vitro some antifungus, considerable cytotoxicity (IC50 of 0.46-2.03 µM) against eight human tumor cell lines, in vivo antitumor, and immunomodulatory activity.


Subject(s)
Antifungal Agents/pharmacology , Antineoplastic Agents/pharmacology , Glycosides/chemistry , Immunomodulation/drug effects , Sea Cucumbers/chemistry , Triterpenes/chemistry , Animals , Antifungal Agents/chemistry , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Humans , Mice , Mice, Nude , Molecular Structure , Neoplasms, Experimental , Saponins/chemistry
12.
Pharmazie ; 76(5): 208-214, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33964994

ABSTRACT

Recently we isolated CN-3, a new asterosaponin from starfish Culcita novaeguineae, and reported that asterosaponin arrests glioma cell cycle via SCUBE3. However, the multiple mechanisms underlying CN-3 anti-glioma action remains poorly known. Thus, the focus of this study was to evaluate the inhibitory effect of CN-3 on human glioma cells and its underlying molecular mechanisms. U87 and U251 cells were incubated with various concentrations of CN-3, and CCK-8, transmission electron microscopy, ICELLigence, TUNEL, flow cytometry, N-acetyl-L-cysteine, and western blot were conducted. As a result, it was found that CN-3 significantly inhibited U87 and U251 cell viability and proliferation in a time- and dose- dependent manner, and also induced mitochondrial apoptosis. Furthermore, we detected that CN-3 downregulated PI3K, P-Akt, AKT and BCL-2, and upregulated cytochrome C and BAX in U87 and U251 cells. Moreover, ROS triggered the inhibition and cell apoptosis for CN-3 via inactivation of P-Akt and activation of cytochrome C. In conclusion, these findings suggest that CN-3 may be a promising candidate for the development of a therapy of glioma.


Subject(s)
Apoptosis/drug effects , Glioma/drug therapy , Mitochondria/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Reactive Oxygen Species/metabolism , Saponins/pharmacology , Animals , Apoptosis Regulatory Proteins/metabolism , Calcium-Binding Proteins/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cytochromes c/metabolism , Humans , Proto-Oncogene Proteins c-akt/metabolism , Saponins/chemistry , Signal Transduction/drug effects , Sincalide/pharmacology , Starfish/chemistry
13.
Transl Cancer Res ; 10(9): 3894-3905, 2021 Sep.
Article in English | MEDLINE | ID: mdl-35116689

ABSTRACT

BACKGROUND: Gliomas remain among the most difficult cancers to treat, with a 5-year overall survival no greater than 5%. Many saponins showed a wide spectrum of anti-cancer activities at low concentration. Polyphyllin II is one of the common saponins from Paris polyphylla. However, the effect of Polyphyllin II on glioma cells has not been evaluated. Objective of the present study was to investigate whether Polyphyllin II have inhibition on glioma cells, and the possible mechanisms. METHODS: The viability of U87 and U251 cells was detected by cell counting kit-8, cell counting real time cellular analysis and cell clone formation methods. Transwell was used to estimate the aggression of U87 and U251. The cell apoptosis rate was tested by flow cytometry. The morphological change was determined by transmission electron microscopy. The levels of AKT, phosphorylation of AKT, Bax, Bcl-2, cytochrome c, and cleaved caspase 3 proteins were assessed by Western blot. N-acetyl-L-cysteine was used to check the role of ROS in polyphyllin II inhibition to glioma cells. RESULTS: Polyphyllin II showed significant suppress to proliferation and aggression of U87 and U251 in a dose- and time- dependent manner. Result of flow cytometry confirmed that Polyphyllin II induced apoptosis to U87 and U251 cells. Transmission electron microscopy observation revealed majority of the glioma cells treated with Polyphyllin II had turgidity of mitochondrion, disarrangement, diminution and vacuolization, those refer to mitochondrial apoptosis. Western blot indicated that Polyphyllin II promoted cyt-c, Bax, caspase 3 and cleaved-caspase 3, and decreased Bcl-2, AKT and p-AKT. Rescue experiments using N-acetyl-L-cysteine, a reactive oxygen species scavenger, reversed the levels of Bax and cyt-c, and the inhibition in Polyphyllin II-treated U87 and U251 cells. CONCLUSIONS: The present findings revealed that polyphyllin II may be a potential drug against glioma.

14.
Oncogenesis ; 9(8): 71, 2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32764572

ABSTRACT

Many saponins are characterized as exhibiting a wide spectrum of antitumor activities at low concentrations. Most of the previous studies that aimed to understand the mechanisms underlying anticancer saponins have focused on numerous classical signaling pathways. However, at the oncogene level, little is known about the action of saponins, especially asterosaponin. In this study, CN-3, a new asterosaponin isolated from the starfish Culcita novaeguineae, decreased the proliferation of U87 and U251 cells at low doses in a dose- and time-dependent manner. Microarray analysis revealed CN-3 significantly induced the differential expression of 661 genes that are related to its antiglioma effect in U251. Nine downregulated genes (SCUBE3, PSD4, PGM2L1, ACSL3, PRICKLE1, ABI3BP, STON1, EDIL3, and KCTD12) were selected, for further verification of their low expression. Then, shRNA transfection and high-content screening were performed and significantly decreased U251 cell proliferation rate was only observed for the SCUBE3 knockdown. qPCR confirmed SCUBE3 was highly expressed in U251 and U87 cells, and had medium expression levels in U373 cells. Real-time cellular analysis using iCELLigence demonstrated that SCUBE3 is an oncogene in U251 and U87 cells, with knockdown of SCUBE3 inhibiting U251 and U87 cell proliferation while, conversely, SCUBE3 overexpression promoted their proliferation. Afterward, SCUBE3 protein was found to have high expression in primary glioma specimens from patients examined by immunohistochemistry but low expression in normal brain. PathScan ELISA analysis in conjunction with TEM observation demonstrated that the effect of SCUBE3 knockdown in U251 does not appear to be related to the induction of apoptosis. Employing CCK-8, iCELLigence, flow cytometry, western blotting, and shRNA transfection (knockdown and overexpression) experiments, we reveal that the reduction of SCUBE3 expression, induced by CN-3, mediated both inhibition and G1/S arrest of U251 via the Akt/p-Akt/p53/p21/p27/E2F1 pathway.

15.
Future Med Chem ; 10(12): 1497-1514, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29788787

ABSTRACT

Marine bryozoans play an important role for the discovery of novel bioactive compounds among marine organisms. In this review, we summarize 164 new secondary metabolites including macrocyclic lactones, sterols, alkaloids, sphingolipids and so forth from 24 marine bryozoans in the last two decades. The structural features, bioactivity, structure-activity relationship, mechanism and strategies to address the resupply of these scarce secondary metabolites are discussed. The structural and bioactive diversity of the secondary metabolites from marine bryozoans indicated the possibility of using these compounds, especially bryostatin 1 (1), bryostatin analog (BA1), alkaloids (50, 53, 127-128 and 134-139), sphingolipids sulfates (148 and 149) and sulfur-containing aromatic compound (160), as the starting points for new drug discovery.


Subject(s)
Alkaloids/pharmacology , Biological Products/pharmacology , Bryostatins/pharmacology , Bryozoa/metabolism , Drug Discovery , Sphingolipids/pharmacology , Sterols/pharmacology , Alkaloids/chemistry , Alkaloids/metabolism , Animals , Biological Products/chemistry , Biological Products/metabolism , Bryostatins/chemistry , Bryostatins/metabolism , Bryozoa/chemistry , Drug Discovery/methods , Humans , Hydrocarbons, Aromatic/chemistry , Hydrocarbons, Aromatic/metabolism , Hydrocarbons, Aromatic/pharmacology , Secondary Metabolism , Sphingolipids/chemistry , Sphingolipids/metabolism , Sterols/chemistry , Sterols/metabolism
16.
Molecules ; 23(2)2018 Feb 23.
Article in English | MEDLINE | ID: mdl-29473864

ABSTRACT

Five previously undescribed triterpenoid saponins (1-5), along with eight known ones (6-13), were isolated from the whole plants of Anemone rivularis var. flore-minore. Their structures were clarified by extensive spectroscopic data and chemical evidence. For the first time, the lupane-type saponins (3 and 12) were reported from the Anemone genus. The anti-proliferative activity of all isolated saponins was evaluated on hepatic stellate cells (HSC-T6). Saponins 12 and 13, which possess more monosaccharides than the others, displayed potent anti-proliferative activity, with IC50 values of 18.21 and 15.56 µM, respectively.


Subject(s)
Anemone/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Saponins/chemistry , Saponins/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Magnetic Resonance Spectroscopy , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/pharmacology , Structure-Activity Relationship
17.
Mar Drugs ; 15(4)2017 Apr 13.
Article in English | MEDLINE | ID: mdl-28406457

ABSTRACT

A new sterol, (23R)-methoxycholest-5,24-dien-3ß-ol (1), two new ceramides, (2S,3R,4E,8E)-2-(tetradecanoylamino)-4,8-octadecadien-l,3-diol (6) and (2S,3R,2'R,4E,8E)-2-(tetradecanoylamino)-4,8-octadecadien-l,3,2'-triol (7), together with three known sterols (2-4), a lactone (5) and two ceramides (8,9), were isolated from the marine bryozoan Cryptosula pallasiana, collected at Huang Island of China. The structures of the new compounds were elucidated by extensive spectroscopic analyses, chemical methods and quantum electronic circular dichroism (ECD) calculations. Among the isolated compounds, sterol 1 possessed a rare side chain with a methoxy group at C-23, and a double bond between C-24 and C-25. Ceramides 6 and 7 possessed 14 carbons in their long-chain fatty acid base (FAB), which were different from the normal ceramides with 16 carbons in the FAB. Moreover, compounds 5 and 8 were isolated for the first time from marine bryozoans. Compounds 1-9 were evaluated for their cytotoxicity against human tumor cell lines HL-60, Hep-G2 and SGC-7901. The results showed that lactone 5 appears to have strong cytotoxicity against the test tumor cell lines, with IC50 values from 4.12 µM to 7.32 µM, and sterol 1 displayed moderate cytotoxicity with IC50 values between 12.34 µM and 18.37 µM, while ceramides 6-9 showed weak cytotoxicity with IC50 ranging from 21.13 µM to 58.15 µM.


Subject(s)
Aquatic Organisms/metabolism , Bryozoa/metabolism , Sterols/metabolism , Sterols/pharmacology , Animals , Cell Line, Tumor , Ceramides/metabolism , China , Fatty Acids/metabolism , HL-60 Cells , Hep G2 Cells , Humans , Molecular Structure
18.
Mol Med Rep ; 14(1): 380-6, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27175997

ABSTRACT

Glioblastoma multiforme (GBM) is the most common and aggressive type of brain tumor, and is associated with a poor prognosis. Saponin 6, derived from Anemone taipaiensis, exerts potent cytotoxic effects against the human hepatocellular carcinoma HepG2 cell line and the human promyelocytic leukemia HL­60 cell line; however, the effects of saponin 6 on glioblastoma remain unknown. The present study aimed to evaluate the effects of saponin 6 on human U87 malignant glioblastoma (U87 MG) cells. The current study revealed that saponin 6 induced U87 MG cell death in a dose­ and time­dependent manner, with a half maximal inhibitory concentration (IC50) value of 2.83 µM after treatment for 48 h. However, saponin 6 was needed to be used at a lesser potency in HT­22 cells, with an IC50 value of 6.24 µM. Cell apoptosis was assessed by flow cytometry using Annexin V­fluorescein isothiocyanate/propidium iodide double staining. DNA fragmentation and alterations in nuclear morphology were examined by terminal deoxynucleotidyl transferase­mediated dUTP nick end labeling and transmission electron microscopy, respectively. The present study demonstrated that treatment with saponin 6 induced cell apoptosis in U87 MG cells, and resulted in DNA fragmentation and nuclear morphological alterations typical of apoptosis. In addition, flow cytometric analysis revealed that saponin 6 was able to induce cell cycle arrest. The present study also demonstrated that saponin 6­induced apoptosis of U87 MG cells was attributed to increases in the protein expression levels of Fas, Fas ligand, and cleaved caspase­3, ­8 and ­9, and decreases in the levels of B­cell lymphoma 2. The current study indicated that saponin 6 may exhibit selective cytotoxicity toward U87 MG cells by activating apoptosis via the extrinsic and intrinsic pathways. Therefore, saponin 6 derived from A. taipaiensis may possess therapeutic potential for the treatment of GBM.


Subject(s)
Anemone/chemistry , Apoptosis/drug effects , Glioblastoma/metabolism , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Saponins/pharmacology , fas Receptor/metabolism , Animals , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Survival/drug effects , DNA Fragmentation/drug effects , Humans , Mice , Plant Extracts/toxicity , Pyramidal Cells/drug effects , Pyramidal Cells/metabolism , Saponins/toxicity , Signal Transduction/drug effects
19.
J Asian Nat Prod Res ; 17(5): 576-85, 2015 May.
Article in English | MEDLINE | ID: mdl-26021881

ABSTRACT

Phytochemical study on the aerial parts of Anemone taipaiensis for the first time led to the isolation of two new oleanane-type triterpenoid saponins 1 and 2, together with four known saponins (3-6). Their structures were elucidated by extensive spectroscopic analysis and chemical evidences. Saponins 2-4 exhibited cytotoxicity against human glioblastoma U251MG cell line with IC50 values ranging from 1.56 to 80.62 µM.


Subject(s)
Anemone/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/isolation & purification , Saponins/isolation & purification , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Drug Screening Assays, Antitumor , Humans , Inhibitory Concentration 50 , Molecular Structure , Oleanolic Acid/chemistry , Oleanolic Acid/pharmacology , Plant Components, Aerial/chemistry , Rhizome/chemistry , Saponins/chemistry , Saponins/pharmacology
20.
Life Sci ; 132: 68-76, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25916801

ABSTRACT

AIM: To study the effects of 2, 3, 5, 4'-tetrahydroxystilbene-2-O-ß-d-glucoside (THSG) on proliferation of rat cardiac stem cells (CSCs) in vitro. MATERIALS AND METHODS: C-kit(+) cells were isolated from neonatal (1 day old) Sprague-Dawley rats by using flow cytometry. Optimal THSG treatment times and doses for growth of CSCs were analyzed. CSCs were treated with various THSG doses (0, 1, 10, and 100 µM) for 12h. RESULTS: Sorted c-kit(+) cells exhibited self-renewing and clonogenic capabilities. Cell Counting Kit (CCK-8) and Proliferating Cell Nuclear Antigen (PCNA) ELISA test positive cells were significantly increased in THSG-treated groups compared with untreated controls. The percentage of S-phase cells also increased after THSG treatment. Moreover, we show that some c-kit(+) cells spontaneously express vascular endothelial growth factor (VEGF), T-box transcription factor (Tbx5), hyperpolarization-activated cyclic nucleotide-gated 2 (HCN2), hyperpolarization-activated cyclic nucleotide gated 4 (HCN4), alpha myosin heavy chain (αMHC), and beta myosin heavy chain (ßMHC) mRNA, and stem cell antigen 1 (Sca-1), cardiac troponin-I, GATA-4, Nkx2.5, and connexin 43 protein were also assessed in CSCs. However, their expression was significantly increased with THSG treatment when compared to untreated controls. CONCLUSION: THSG can increase proliferation of rat CSCs in vitro and thus, shows promise as a potential treatment strategy for stimulating endogenous stem cells to help repair the injured heart after myocardial infarction in patients.


Subject(s)
Cell Proliferation/drug effects , Glucosides/pharmacology , Myoblasts, Cardiac/physiology , Myocardium/cytology , Stilbenes/pharmacology , Analysis of Variance , Animals , Blotting, Western , Cells, Cultured , DNA Primers/genetics , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Gene Expression Profiling , In Vitro Techniques , Myoblasts, Cardiac/drug effects , Proliferating Cell Nuclear Antigen/metabolism , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , Stem Cell Factor/metabolism , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...